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მომენტი, როგორც ახალი ფაქტორი და მისი მათემატიკური ლოდინი 

განხილულია როგორც დამატებითი მნიშვნელოვანი ფაქტორი პორტფელის 

ოპტიმიზაციისთვის. ვუშვებთ რა, რომ აქტივების ფასები მოძრაობს 

მრავალ-განზომილებიანი ბროუნის ძრაობით, ვიღებთ პორტფელის 

სიმდიდრის პროცესს მრავალი აქტივისთვის და განვსაზღვრავთ 

პორტფელის ღირებულების უმცირეს დონეს, რომელსაც შეიძლება მან 

მიაღწიოს დიდი დასაჯერებლობის დონით. საბოლოოდ პორტფელის 

ოპტიმიზაციის ამოცანა დაიყვანება რისკიანი პორტფელების ეფექტური 

ზედაპირის აღწერამდე, სადაც განლაგებულია პორტფელები სხვადასხვა 

რისკის, მოსალოდნელი ამონაგების და შემოსაზღვრული პირველი 

მიღწევის მომენტით (მინიმალური ამონაგების დონემდე). ეფექტურ 

ზედაპირზე განლაგებული ყველა პორტფელი რისკიანობა - ამონაგების 

თვალსაზრისით ეფექტურია. 
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ნაშრომის მეორე ნაწილი ძირითადად ეთმობა სავალუტო პორტფელს, 

თუმცა მოდელი ზოგადი ხასიათისაა და გამოიყენება ნებისმიერი 

აქტივებისგან შედგენილი პორტფელებისთვის. განხილულია აქტივების 

ფასების დინამიკა და აირჩევა პორტფელში შემავალი აქტივების წონები 

საინვესტიციო პერიოდის გათვალისწინებით. ნაშრომში შემუშავებული 

მიდგომა წარმოადგენს მარკოვიცის [18] მოდელის ერთგვარ განზოგადებას. 

საბოლოოდ შეგვიძლია დავასკვნათ, რომ მოდელი იძლევა რისკის უფრო 

გონივრულ საზომს ვიდრე სტანდარტულ მოდელებში წარმოდგენილი 

ვარიაცია. 

შედეგად ნაშრომში წარმოდგენილია ორი ამოცანა - ტარიფების გავლენა 

ვალუტის გაცვლით კურსზე და პორტფელის ოპტიმიზაცია. ორივე 

ამოცანის განხილვა შესაძლებელია ინდივიდუალურად და ისინი არ არიან 

ურთიერთდამოკიდებული. გასაკუთრებით საგულისხმოა პორტფელის 

ოპტიმიზაციის მოდელი, რომელსაც ნაშრომში განვიხილავთ როგორც 

ვალუტის პორტფელს. თუმცა მოდელის განზოგადება შესაძლებელია 

ნებისმიერი სავაჭრო ინსტრუმენტით, რომელთა ფასებიც დაკვირვებადია 

დინამიკაში. ბოლოს წარმოდგენილია პორტფელების ოპტიმიზაციის 

მაგალითები. 
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Effects of Bilateral Tariffs on Currency Exchange Rate and 

Characterization of Efficient Portfolios 

Executive Summary 

Currency exchange rate is one of the important factors determining a nation’s 

overall economic health. In a free trade environment, its value depends on multiple 

variables, many of which are beyond the control of a government. Having a precise 

prediction of an equilibrium exchange rate helps governments and firms arrange 

their economic plans safely. Furthermore, economic agents managing portfolios 

consisting of currency pairs are constantly in need of predicting the exchange rate 

value. There have been numerous attempts to model the equilibrium based on 

various factors. We put our attention on a model where the governments of nations 

involved in a free trade have a control variable to influence the value of the 

exchange rate. However, the values of these control variables have to be chosen 

based on maximization of benefit from trade. In addition, once the equilibrium 

currency exchange rate is determined, for one managing a portfolio with the 

currency pairs in it, having the values of the rates determined is of great 

importance.  

In order to address the above mentioned problems, this thesis is divided in two 

main parts. The first part deals with game theory and exploration of gain 

maximization problem of two nations engaging in non-cooperative bilateral trade. 

We examine the probabilistic model of an exchange of commodities under 

different price systems. Assuming the probability distributions of volumes of 

commodities exchanged and their selling prices in both markets are known, we 

arrive at currency demand functions for each nation, whose shapes ultimately 

determine the edge one nation has over another in terms of trading.  

Volume of commodities exchanged determines the demand each nation has over 

the counterparty’s currency. However, this quantity can be manipulated by 

imposing a tariff on imported commodities. As long as the gain from trade is 
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determined by the balance between imported and exported commodities, such a 

scenario results in a two party game where Nash equilibrium tariffs are determined 

for various foreign currency demand functions and ultimately, the exchange rate 

based on optimal tariffs is obtained. 

Nations involved in exchange of commodities differ according to the currency 

demand functions. A special case when both nations have identical currency 

demand functions was considered in [15].  Such nations are referred to as 

economically symmetric ones. The main novelty of our approach is to extend the 

model into a more general, asymmetric case where two nations involved in non-

cooperative bilateral trade have different currency demand functions. 

In addition, we consider a model from [12], where the gain from trade is based on 

completely different components and obtain the Nash equilibrium pair of tariffs. 

In order to illustrate the effect of currency exchange rate on the equilibrium point, 

we improve the model by introducing the currency exchange rate and determine 

its optimal value based on the optimal tariffs. 

The thesis lays down the theoretical groundwork for arriving at optimal solutions 

regardless of the shapes of demand functions. Findings and solutions provided 

throughout the text are primarily given based on abstract functions following 

predefined economic patterns. From the practical point of view, these functions 

would have been derived from probability distributions of the prices and quantities 

of commodities. Since our task is to analyze the equilibrium point given the 

currency demand functions, we take some examples of functions as granted. 

Lastly, the sufficient conditions are defined for a solution to be the Nash 

equilibrium point. These conditions are then applied to the special cases of 

currency demand functions related to economically symmetric and asymmetric 

nations. For the asymmetric case we also consider different versions of the 

currency demand functions to emphasize the importance of their shapes and 

illustrate the dynamic effects of shifting the functions on the equilibrium point. 
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As long as the exchange rate has been examined, the second part of the thesis 

explores the selection of optimal portfolio of foreign currency pairs by replacing 

the standard Mean-Variance model by Mean-Minimum Return Level (MRL) 

framework and adding one important dimension – expectation of bounded First 

Passage Time (FPT) towards the MRL. To measure how much a given portfolio is 

exposed to risk, the new model can capture both, the amount of the largest possible 

loss at a certain confidence level and time to such an event occurring. The novelty 

of this approach is the introduction of bounded first passage time towards MRL and 

taking its expectation into consideration as an additional factor in portfolio 

selection decision making. Assuming that the asset price dynamics follow multi-

dimensional Geometric Brownian Motion with drift, we obtain a portfolio wealth 

process for multiple assets and we evaluate the lowest possible value to which it 

can drop by a high confidence level. Then we extend our examination of the 

optimal portfolio selection by ultimately obtaining the efficient surface of risky 

portfolios. As a result, we show that the third dimension can make a significant 

difference while choosing the asset weights compared to classical models ignoring 

the portfolio return paths as long as they achieve a desired combination of risk and 

return. 

We focus on the portfolio of foreign currency pairs for our purposes, however the 

model is more general in nature and can easily be applied to portfolios of any assets. 

We observe the asset price movements in dynamics and decide on the investment 

plan based on the predefined investment horizon. The model can be thought of as 

a generalization of a Markowitz [18] model where optimal portfolios are selected 

based on average return and corresponding variance. From the practical point of 

view, the three dimensional model we offer gives a more reasonable safety measure 

and a risk-return combination. 

As a result, the thesis offers a comprehensive review of investment plan stretching 

from economic problem of trade gain maximization to portfolio optimization. Both 

models are applicable on their own. Especially the three dimensional portfolio 
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model which does not necessarily consist of currency pairs, rather it can include a 

mix of any trading instruments whose spot prices are dynamically observable. The 

thesis ends with some examples of portfolios consisting of stocks and ETF 

(Exchange Traded Funds). 
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Introduction 

Due to different circumstances of production, two nations can produce similar 

goods and services at different prices. They can both benefit by getting involved in 

international trade to import commodities, which under their own price system is 

of relatively low price than domestically produced commodities, which under the 

same price system is of relatively high price. The volume of commodities imported 

determines one nation’s demand for another nation’s currency. Balance of demands 

of two nations for foreign currency determines an exchange rate. 

Gain functions for both nations are made up of the foreign currency demand 

functions. The foreign currency demand itself for a given nation depends on the 

volume of commodities imported. A government can affect this quantity by 

imposing a tariff on imports, thus making it less desirable to buy commodity from 

another nation’s market. For the domestic and foreign nations, annual demand and 

corresponding prices measured in national currency are 𝑑1, 𝐼, 𝑑𝑁 , 𝑝1, 𝐼, 𝑝𝑁  and 

𝑑1
∗, 𝐼, 𝑑𝑁

∗ , 𝑝1
∗, 𝐼, 𝑝𝑁

∗  respectively. If we take 𝑥 as an exchange rate of a unit of foreign 

currency in terms of domestic currency units, then the domestic and foreign 

nations’ demand for foreign currency are given by 

𝐷(𝑥) ≔
1

𝐶𝑁
∑ 𝐸̅(𝑝𝑘

∗𝑑𝑘,
𝑝𝑘

𝑝𝑘
∗ > 𝑥)

𝑁

𝑘=1

 

and 

𝐷∗(𝑥) ∶=
1

𝐶𝑁
∗ ∑ 𝐸̅(𝑝𝑘𝑑𝑘

∗ ,
𝑝𝑘

𝑝𝑘
∗ < 𝑥)

𝑁

𝑘=1

 

respectively, where 𝐶𝑁 = ∑ 𝐸̅(𝑝𝑘
∗𝑑𝑘)

𝑁
𝑘=1 , 𝐶𝑁

∗ = ∑ 𝐸̅(𝑝𝑘𝑑𝑘
∗)𝑁

𝑘=1  and 𝐸̅  is the 

mathematical expectation under  𝑃̅ on a probability space (Ω̅, 𝐹̅, 𝑃̅). If we introduce 

the extended probability space (Ω, 𝐹, 𝑃), where 

Ω = Ω̅ × {1, . . . , 𝑁}, 𝑃(𝐴, 𝑘) =
1

𝑁
 𝑃̅(𝐴), 𝐴 𝜖 𝐹̅ 
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and define random variables 𝑝, 𝑝∗, 𝑑, 𝑑∗ by 

𝑝(𝜔, 𝑘) = 𝑝𝑘(𝜔), 𝑝∗(𝜔, 𝑘) = 𝑝𝑘
∗(𝜔), 

𝑑(𝜔, 𝑘) = 𝑑𝑘(𝜔), 𝑑∗(𝜔, 𝑘) = 𝑑𝑘
∗(𝜔), 

then the demand functions above can be rewritten as probability distribution 

functions 

𝐷(𝑥) = 𝐸 (𝑝∗𝑑,
𝑝

𝑝∗
> 𝑥),   𝐷∗(𝑥) = 𝐸 (𝑝𝑑∗,

𝑝

𝑝∗
< 𝑥) 

which indicate that the domestic nation will import the commodity if 
𝑝

𝑝∗ > 𝑥 and 

the foreign nation will import if 
𝑝

𝑝∗ < 𝑥. Since 𝑥 is the value of an unit of foreign 

currency in terms of the domestic currency units, increasing the exchange rate 

makes foreign commodities more expensive for the domestic nation and the 

domestic commodities less expensive for the foreign nation. Therefore, 𝐷  is a 

decreasing function of 𝑥 and 𝐷∗  is an increasing function of 𝑥. These functions 

have the following properties 

𝐷(0) = 1, 𝐷(∞) = 0, 𝐷∗(0) = 0, 𝐷∗(∞) = 1. 

For an exchange rate 𝑥, solving the equation 

𝑥𝐷(𝑥) = 𝐷∗(𝑥) 

for 𝑥, yields the equilibrium rate 𝑥 = 𝑒. 

This equation determines the equilibrium exchange rate when both nations 

practice an unrestricted free trade policy. Left side of the equation is the foreign 

currency demand of a domestic nation and the right side is the foreign currency 

demand of a foreign nation, both measured in domestic currency units. 

Now suppose the domestic and foreign governments impose the following tariffs 

on imported commodities: 1 − 𝜃 and 1 − 𝜃∗. Then the domestic nation will import 

the commodity if 
𝑝𝜃

𝑝∗ > 𝑥, and the foreign nation will import if 
𝑝∗𝜃∗

𝑝
>

1

𝑥
. Taking 

tariffs into account, the demand functions defined above now become 
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𝐷 (
𝑥

𝜃
) =

𝐸(𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗})

𝐸(𝑝∗𝑑)
,   𝐷∗(𝑥𝜃∗) =

𝐸(𝑝𝑑∗1{𝜃∗𝑝∗𝑥>𝑝})

𝐸(𝑝𝑑∗)
, 

where 

𝐸(𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗}) =
1

𝑁
∑ 𝐸̅ (𝑝𝑘

∗𝑑𝑘1{𝜃𝑝𝑘>𝑥𝑝𝑘
∗ }) ,

𝑁

𝑘=1

 

𝐸(𝑝𝑑∗1{𝜃∗𝑝∗𝑥>𝑝}) =
1

𝑁
∑ 𝐸̅ (𝑝𝑘𝑑𝑘

∗1{𝜃∗𝑝𝑘
∗𝑥>𝑝𝑘}) ,

𝑁

𝑘=1

 

𝐸(𝑝∗𝑑) =
𝐶𝑁

𝑁
,   𝐸(𝑝𝑑∗) =

𝐶𝑁
∗

𝑁
 

and so the equilibrium exchange rate adjusted for the tariffs is now determined 

from 

𝑥𝐷 (
𝑥

𝜃
) = 𝐷∗(𝜃∗𝑥), 

from which it is clear that the equilibrium exchange rate 𝑥 = 𝑒 now depends on 𝜃 

and 𝜃∗ . At the same time, according to the Schwartz’s [15] model which we 

develop, gain from competitive trade consists of two components – imported and 

exported commodities measured in national currency. The gain from trade 

functions for each nation are defined as follows 

𝐺(𝑒, 𝜃, 𝜃∗) = 𝐸 (𝑝𝑑,
𝑝∗

𝑝
<

𝜃

𝑒
) − 𝐸 (𝑝𝑑∗,

𝑝∗

𝑝
>

1

𝑒𝜃∗
)

= 𝐸 (
𝑝

𝑝∗
1

(
𝑝
𝑝∗>

𝑒
𝜃
)
𝑝∗𝑑) − 𝐸 (𝑝𝑑∗1

(
𝑝
𝑝∗>

𝑒
𝜃
)
)

= −∫ 𝑦𝐷′(𝑦)𝑑𝑦 − 𝐷∗(𝜃∗𝑒),
∞

𝑒/𝜃

 

and 

𝐺∗(𝑒, 𝜃, 𝜃∗) = 𝐸 (𝑝∗𝑑∗ ,
𝑝

𝑝∗
< 𝜃∗𝑒) − 𝐸 (𝑝∗𝑑,

𝑝

𝑝∗
>

𝑒

𝜃
)

= ∫
1

𝑦
𝐷∗′ (

1

𝑦
)𝑑𝑦 − 𝐷 (

𝑒

𝜃
) ,

∞

1
𝜃∗𝑒
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The idea behind imports regarded as beneficial for a nation is that it has an 

incentive to buy commodities from the foreign market only if it costs them less 

than it would by buying in the domestic market. And the second component, 

export is regarded as gain deductible quantity since it benefits the competitor by 

the same argument. 

It is important to realize that within this model, the components of trade gain 

function involve the commodities exchanged only. So the idea of gain is narrowed 

down to the advantages competitors take from trade and is not extended 

throughout the whole economies of two nations. For example, we do not claim that 

import is necessarily beneficial and export is harming. What we claim is, that 

import is an advantage taken from the competitor and the export is an advantage 

taken by the competitor. So this import-export phenomena is considered 

autonomously only within the trade context without further impact analysis over 

various parts of economies. 

The nations involved in non-cooperative trade are facing the dilemma of how 

much tariff to impose on imports. Greater the tariff, lower the commodities 

imported, it hurts the nation’s gain, and benefits the competitor’s one. From the 

gain functions, it is obvious that the greatest mutual benefit is achieved when 

nations cooperate and pursue a free trade policy. We confine ourselves to non-

cooperative case and find the pair of optimal tariffs (equilibrium point) which 

maximizes the gain for both nations. 

In the first part, in addition to defining the currency demand functions and 

illustrating the relation between them based on the currency exchange rate, we 

also provide a general solution to the gain maximization game and find the Nash 

equilibrium point for both nations. It is the solution to the system of equations 

𝑒̂𝐷 (
𝑒̂

𝜃
) = 𝐷∗(𝜃∗ 𝑒̂), 

𝐷 (
𝑒̂

𝜃
) = 𝜃∗(1 − 𝜃)𝐷∗′(𝜃∗𝑒̂), 
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𝐷 (
𝑒̂

𝜃
) =

𝑒̂

𝜃
(𝜃∗ − 1)𝐷′ (

𝑒̂

𝜃
). 

We also provide the sufficient conditions for the solution to be the Nash 

equilibrium point 

𝜃∗2
(1 − 𝜃)𝑒𝜃̂𝐷∗′′(𝜃∗𝑒̂) − 𝜃∗𝐷∗′(𝜃∗𝑒̂) −

𝑒𝜃̂ 𝜃 − 𝑒̂

𝜃2
𝐷′ (

𝑒̂

𝜃
) < 0, 

𝜃(𝜃∗𝑒̂𝜃̂∗ + 𝑒̂)𝐷′ (
𝑒̂

𝜃
) − (1 − 𝜃∗)𝑒𝜃̂∗𝑒̂𝐷′′ (

𝑒̂

𝜃
) > 0. 

Next we provide definitions for economically symmetric and asymmetric nations 

based on [15]. Within this part we provide some special cases of functions and find 

the equilibrium points for those functions. Namely, we solve the trade gain 

maximization problem for the following symmetric cases: 𝐷(𝑥) = 𝐷∗ (
1

𝑥
) =

(1 + 𝑥)−2 and 𝐷(𝑥) = 𝐷∗ (
1

𝑥
) = (1 − 𝛼𝑥)+, 𝛼 < 1. More importantly, we consider 

an asymmetric case based on 𝐷(𝑥) = exp(−𝛿𝑥) , 𝐷∗(𝑥) = (𝛼𝑥𝒆𝒙𝒑(𝛽𝑥)) ∧ 1. Here 

we also illustrate the effect of changing the foreign currency demand functions on 

the equilibrium point. 

Later we review an additional model from [12]. Within this model, we solve a 

similar problem of trade gain maximization where it depends on completely 

different parameters compared to the first model. Namely, the gain function 

consists of the consumer surplus, profits made by the local firms from selling 

commodities in domestic and foreign markets and the tariff revenue collected by 

the governments from imports 

𝑊(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) =
1

2
𝑄2 + 𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗𝑓∗) + 𝑡𝑓∗, 

𝑊∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) =
1

2
𝑄∗2 + 𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) + 𝑡∗𝑓 

Where 𝑄 = ℎ + 𝑓 and 𝑄∗ = ℎ∗ + 𝑓∗ are the quantities of commodities produced 

computed as sums of production for the domestic and foreign markets. 𝑡 and 𝑡∗ 

denote the tariffs. And the profit made by the firms are defined as 
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𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = (𝑎 − ℎ − 𝑓∗)ℎ + (𝑎 − ℎ∗ − 𝑓)𝑓 − 𝑡∗𝑓, 

𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = (𝑎 − ℎ∗ − 𝑓)ℎ + (𝑎 − ℎ − 𝑓∗)𝑓 − 𝑡𝑓∗ 

Here, the firms produce commodities for domestic and foreign markets. Within 

this part, we also provide a generalized model by introducing the currency 

exchange rate as 𝑒 =
𝑝𝑓∗

𝑝∗𝑓
, which redefines the firm profit and gain functions of the 

foreign nation as 

𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = 𝑒(𝑎 − ℎ∗ − 𝑓)ℎ∗ + 𝑒(𝑎 − ℎ − 𝑓∗)𝑓∗ − 𝑒𝑡𝑓∗ 

and 

𝑊∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) =
1

2
𝑒𝑄∗2 + 𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) + 𝑒𝑡𝑓∗ 

and find the Nash equilibrium values for production to be 

ℎ̂ =
𝑎 − 𝑓∗

2
, 

ℎ̂∗ =
𝑎 + 𝑡∗

3
, 

𝑓 =
𝑎 − 2𝑡∗

3
, 

𝑓∗ =
𝑎 − ℎ − 𝑡 + √(𝑎 − ℎ − 𝑡)2 + 3(𝑎 − ℎ∗ − 𝑓)ℎ∗

3
. 

Unlike the first model, here the currency exchange rate is not taken as a function 

of tariffs. Lastly, the proofs of some solutions are provided in appendixes 

accompanying the work. 

Game theory has long been used and is still a widely used tool for problems of 

competition. Approaches vary depending on the nature of the problem. The 

outcome of the optimization is the best possible solution for both nations taking 

into consideration the potential response from another nation. Actions these 

nations can take are setting tariffs on imported commodities in response to each 

other. This situation is sometimes referred to as “trade war”. The timing of the game 

in both models is as follows. Both nations trade the quantities based on the 

necessities they have. Since they do not cooperate, one nation unilaterally sets a 

tariff on imports and affects the imported quantities of commodities. So this either 
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drops or raises the gain from trade depending on the tariff rate. In response, the 

second nation chooses a tariff rate that does the same for itself, however the Nash 

equilibrium pair of tariffs if respected, ensures that they get the most benefit out of 

the trade. 

There are certain assumptions behind the models. Both models assume that the 

availability of imports does not change regardless of the imposed tariffs. 

Furthermore, we assume that the prices are not affected by the changed demand. 

In both cases, the economic intuition would suggest the opposite. Besides that, 

there are numerous specific mathematical assumptions provided throughout the 

text. 

The novelty of the approach examined in this thesis is to make the commodities 

and their prices random and solve the gain maximization problem under the Nash’s 

sense. Greatest mutual benefit is achieved when nations cooperate and pursue a 

free trade policy. However, here we assume the non-cooperative game, so they 

determine the optimal tariffs which results in greatest benefit for both parties. 

The second part of the paper explores the portfolio optimization in three 

dimensional framework. Portfolio selection theories have gone through various 

improvements since the introduction of its most prominent theory by Harry 

Markowitz [18] in 1952. He was first to introduce the risk-return principle with 

the well-known Mean-Variance framework. The basic idea is to arrive at an 

efficient frontier curve of risky assets by minimizing volatility for given expected 

returns. It is shown that taking more than one risky position can eliminate some 

portion of risk as an investor realizes the effect of diversification. Volatility as a risk 

measure is ideal when portfolio returns are normally distributed. However, when 

dealing with asymmetric distributions, it simply leads to misinterpretation of risk. 

Furthermore, in most of the cases, especially during abnormal economic states, 

history shows that markets do not follow the logic of normal distribution. 

Measuring risk by volatility penalizes losses equally to profits of the same 

magnitude. However, investors are more concerned with a downside risk rather 
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than simple volatility so that they are aware of the worst-case scenario that can be 

realized with a high degree of confidence. In addition, while aiming to select less 

correlated assets is a rational approach, there are some downsides we focus on. 

Slight change in correlation can cause significant change in MRL. At the same time, 

one may allocate funds into assets in proportions, which while being optimal in 

Mean-Variance sense, can cause hitting the MRL level faster by having overlooked 

one important factor – expected time of the portfolio return process towards the 

minimum level. This may be a source of severe problems for investors who are 

exposed to margin calls or need to raise funds in a short period of time if such an 

event is realized. To account for the problem of measuring downside risk rather 

than simple dispersion, Value at Risk (VaR) is used. VaR is a worst loss that can 

occur with a high confidence level. While this approach is a step to the right 

direction when it comes to assessing worst possible risk that can be realized, it still 

lacks one important factor – expected time when the returns hit the lowest possible 

value at some confidence level. This is critically important for portfolios exposed 

to mark to marketing or margin calls. Adding this third dimension makes most of 

its sense when the portfolio volatility is large enough to cause the expected hitting 

time move before the investment horizon. In this scenario, one can differentiate 

portfolios by taking into account the expectation of hitting time bounded by the 

investment length. In case when portfolio variance is sufficiently low, the 

expectation of bounded hitting time coincides with the investment horizon and 

becomes an ignorable factor and an investor can stay within the two-dimensional 

Mean-MRL framework. Lack of historical data or the complexity of parameter 

estimation sometimes forces investors to apply non-parametric methods.  

Our aim is to construct a model which delivers the best performance in the sense 

that safety is taken as a priority. In order to concentrate on the contribution of the 

paper, we use Minimum Return Level as a risk measure instead of VaR or ETL 

(Expected Tail Loss). Once having MRLs and portfolio expected returns computed 

for different sets of asset weights, we extend the framework by introducing 
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expected first passage time bounded by investment horizon as a third dimension 

used for decision making. This is done by computing the expectation of the 

minimum between the investment horizon and the first passage time of portfolio 

return process towards the minimum level. Once all three quantities for a given set 

of portfolio weights are in place, we define the best combination of them by 

maximizing MRL and the expected bounded first passage time for a given expected 

return of a portfolio. The ultimate result is the efficient surface of risky portfolios. 

This can be regarded as the three-dimensional analogue of the efficient frontier in 

classical Mean-Variance model. As a comparison to the Mean-Variance model, 

while this model might suggest holding a certain weights in assets allocated within 

a given portfolio, the Mean-MRL-FPT model may reject it altogether and find a set 

of weights which outperforms in 3-dimensional sense. In addition, it is quite 

possible that the optimal portfolio weights found by the Mean-Variance 

framework produces a negative drift which is avoided by the Mean-MRL-FTP 

model. In a highly volatile environment, portfolio of assets selected by the Mean-

Variance framework will hit the lowest possible return level earlier than the 

portfolio selected by Mean-MRL-FTP framework and at the same time, the latter 

includes the risk measured by variance as it is reflected in computation of MRL. So, 

there is a double benefit from applying MRL and FTP when the available assets are 

volatile enough. 

This chapter is structured in four main sections. The first section examines the 

differential equations which represent the multi-dimensional Ito’s processes and 

constructs the portfolio wealth process. In particular, we take 𝑛 – dimensional Ito’s 

process which is a vector of asset prices 𝑆∗ = (𝑆1, . . . , 𝑆𝑛)𝑇  driven by 𝑛  – 

dimensional Brownian Motion 𝐵 = (𝐵1, . . . , 𝐵𝑛)𝑇 , where 𝐵𝑖 = (𝐵𝑡
𝑖, 𝑡 ≥ 0) be the 

real valued Brownian Motion which starts from 0 on(Ω, 𝐹, 𝑃): 

𝑑𝑆𝑖 = 𝑆𝑡
𝑖(𝜇𝑖𝑑𝑡 + 𝜎𝑖1𝑑𝐵𝑡

1 + ⋯+ 𝜎𝑖𝑛𝑑𝐵𝑡
𝑛) 
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where 𝜇𝑖  is the drift coefficient and 𝜎𝑖𝑗 , 𝑗 = 1, . . . , 𝑛 is an element from the row 

vector (𝜎𝑖1, . . . , 𝜎𝑖𝑛). Then we define the portfolio wealth process 𝑉𝑡 corresponding 

to self-financing portfolio to follow the differential equation: 

𝑑𝑉𝑡 = 𝜃𝑡
1𝑑𝑆𝑡

1 + ⋯+ 𝜃𝑡
𝑛𝑑𝑆𝑡

𝑛 

where 𝜃𝑡
𝑗
 denotes the weight of 𝑗𝑡ℎ  asset within the portfolio. Ultimately, we 

obtain the portfolio wealth process to be driven by the Brownian motion as follows 

𝑉𝑡 = 𝑉(0) 𝒆𝒙𝒑(𝜇𝑡 + 𝜎̃ 𝐵̃𝑡). 

Within this section, it is shown that in order for the portfolio wealth to drop to its 

minimum level, the Geometric Brownian Motion that determines the portfolio 

wealth must reach the level which we call the Minimum Return Level. This brings 

us to the next, second section where the MRL is formally defined as a quantile from 

the probability distribution function of portfolio rates of returns as follows 

𝑚 = 𝐹−1(𝛼) 

with 𝐹 a probability distribution function of portfolio rates of returns and 1 − 𝛼 as 

a confidence level. The third section overviews the third dimension of the model 

– expected bounded First Passage Time towards MRL. This value consists of two 

parts – the term involving the probability density function and the cumulative 

probability function of the First Passage Time 

𝐸[𝜏𝑚 ∧ 𝑇] = ∫ 𝑡𝑓𝜏𝑚
(𝑡)𝑑𝑡 + 𝑇[1 − 𝑃(𝜏𝑚 ≤ 𝑇)]

𝑇

0

 

where 𝜏𝑚 is a first passage time of 𝑉𝑡 to the level 𝑚, 𝑇 is the investment horizon 

and 𝑓 is the normal probability density function. The final part, section four deals 

with the model construction. It combines all the three dimensions and obtains the 

efficient surface of risky portfolios. 

Finally, the last sections provide examples of optimal portfolios consisting of two 

and multiple assets respectively. In particular we review a portfolio consisting of 

two assets whose prices are observed in dynamics and construct the set of portfolios 

based on the three dimensional model described above. Later we add a multi-asset 

portfolio (consisting of four assets) and solve the similar problem inn three 
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dimensional framework and as a comparison we include portfolios from mean-

variance framework. In this model the portfolios have expected bounded first 

passage times all set within the investment horizon. Later we examine an example 

of a portfolio consisting of three assets whose expected bounded first passage times 

are equal to the investment horizon. So the portfolios are almost never expected to 

reach the minimum return level with a high confidence level. In this case, the third 

dimension can be dropped altogether and switch to the Mean-Variance or Mean-

MRL framework. This effect is illustrated on the efficient frontier from the Mean-

Variance framework. Numerical techniques are used in computation of the third 

dimension for portfolios. As a final note, all the examples examined at the end of 

the thesis are included in the accompanying spreadsheets. Computations are 

examined in details throughout the text. 
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Literature Review 

Game theory is a discipline studying an interaction of decision makers assuming 

their rationality. The theory was introduced as a completely new interdisciplinary 

research by Neumann and Morgenstern [1], [2]. This paper set the philosophical 

foundation and the mathematical model in combination. Particularly, the paper 

was motivated by the idea of two-person zero-sum game. The game is called zero-

sum if the utility gain of one player is completely eliminated by the utility loss of 

another. So the participants’ wins and losses cancel out each other. The theory was 

initially applicable in only a few disciplines. Later on, the theory went through the 

development phase by the original authors as well as many others. Currently there 

are countless applications of the theory in many disciplines. Namely, the theory is 

widely applicable in economics, biology, logic and many areas of social and 

computer sciences. 

The decisive development of the theory was a very short paper by Nash [3] in 1950. 

This paper defined an approach to arrive at an optimal point for competitors at the 

strategic decision making process. Nash found out that the maximum mutual 

benefit in a game is attained when the participants cooperate. Furthermore, he 

concluded that acting based on the selfish interest, leads to an optimal solution 

commonly referred to as the Nash equilibrium. 

Nash [4] developed the model he originally initiated by introducing the bargaining 

problem in a game. This model still considers two players and deals with sharing 

the surplus they jointly generate. Nash introduced uncertainty about the utilities 

attained by each player based on their decisions. They still do not cooperate and 

make rational decisions. However they might be unaware of the utilities which are 

feasible following their actions. He claimed that even in this situation, the decisions 

made by the players again lead to a unique solution known as the bargaining 

equilibrium. In addition, the model is clearly formulated and axiomatized in the 

sense that, the conditions are set which have to be satisfied by the solution of the 

game. 
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In 1951, Nash [5] developed an idea of two person zero sum game which can be 

regarded as a generalization of a model introduced by Neumann and Morgenstern 

described above. This model deals with a scenario where two persons do not 

cooperate and make rational decisions according to the anticipated utilities they 

have. 

Nash [6] explores the bargaining problem in a more generalized form. In particular, 

this paper considers a model which is an extension of [4]. However this model 

assumes that the players do not have opposing plans or aims, neither they have 

coinciding ones. Furthermore, according to the model, they can agree upon a 

strategy to mutually attain a solution they both benefit from. Thus the paper is 

entitled as cooperative game. 

Merrill Flood and Melvin Dresher formulated a Prisoner’s Dilemma in 1950. This 

is a hypothetical experiment considering two participants of the game acting purely 

based on selfish interests which do not lead to mutually optimal outcome. The idea 

behind this scenario is that cooperation leads to a greater utility received by both 

participants than the one obtained by pursuing purely self-interests ignoring the 

interests of the competitor. 

Our interests rely on the prisoner’s dilemma type of game, where two players do 

not cooperate and make decisions unilaterally without knowing what decision is 

made by the competitor. In this type of game, it is obvious that the best mutual 

benefit would be achieved in case of cooperation, however since the players are 

not able to communicate, they make decisions based on their individual expected 

benefits. This type of game is of our primary interest since we only consider a game 

with competitors not cooperating and not pursuing a free trade policy. 

In 1973, Smith and Price [7] made an important application of [8] and defined the 

mathematical concept for the evolutionary game theory (EGT). The theory is based 

on the biological context and can be thought of as an application of classical game 

theory to evolving populations in biology. It had a very limited application initially. 
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The main idea behind the EGT is the strategies of participants constantly evolving 

based on the interaction in dynamics. The model uses the Markov chains for 

switching strategies from states to states. The main difference between EGT and 

the classical game theory is that, the EGT is more concerned about the dynamics 

of strategy change which itself is largely affected by the frequency of competing 

strategies in the population. Within the EGT, the participants do not necessarily 

have rational strategies. They are only required to have at least some strategy. The 

goodness of the strategy is ultimately checked based on the alternative strategies 

making the original one either vulnerable or capable to survive, reproduce and 

evolve. 

The seminal work of Smith [9] was published in 1982 followed by Axelrod’s book 

[10] in 1984. Plenty of material from these two books were later on reflected in 

many works related to the game theory applications in economics and social 

sciences. In the modern world, the classical and evolutionary game theories are 

parts of behavioral economics and other fields where the phenomena of rational 

decision based non cooperative interactions are involved. 

McMillan [11] focuses on business and economics related applications of game 

theory. Here one can find strategies for rational decision maker managers. 

Scientists have studied the trade gain maximization problem from different 

perspectives. R. Gibbons [12] considered a game model in which total welfare of a 

country consists of an economic surplus enjoyed by consumers, profit earned by 

firms within a given country and the tariff revenue collected from the imports. 

Maximization of the total welfare from trade leads to optimal tariff countries 

involved in trade should impose. 

In [13], a closed economy model is considered in which the country consists of a 

fixed number of households having preferences as a function of consumption and 

leisure. Within this model, consumption goods consist of intermediate goods that 

can be produced by units of labor. Under the closed economy model, quantities of 
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each intermediate good and the tariff a given country imposes on imports are 

optimized. 

The model is then extended to a two country model in which there are large and 

small countries. Large country consists of many consumers while the small country 

has only one household. Since technologies of production differ across countries, 

each has different production capacity based on which they obtain relative price 

levels for the intermediate goods. The difference in relative prices implies the gain 

from trade. 

Ricardian model [14] of two countries under free trade assumes that the large and 

the small countries get involved in trade. The large country can meet the demands 

for a specific intermediate good at a relative price of another intermediate good. 

Therefore, the small country specializes in the production of such a good. The small 

country can benefit from trade while the large country has nothing to gain. 

The Ricardian model is extended by assuming that the large country imposes a 

tariff on imported goods. Now it can also benefit from trade. So the small country 

exports the goods and pays the specified tariff, after which it purchases the 

intermediate good from the large country. The large country has to optimize the 

tariff. 

J. T. Schwartz [15] considered a model of trade gain maximization where the 

commodities produced and the prices for those commodities are static. In addition, 

gain from trade is determined to be the difference between the values of imported 

and exported commodities measured in national currency. Since importing those 

commodities which cost less under the national price system is regarded as a benefit 

for both nations, gain from competitive trade for a given nation is considered to be 

the difference between the advantage it took over the competitor and the 

advantage the competitor took over it, thus the difference between imports and 

exports measured at national currency. The Schwartz’s model solves the tariff 

optimization problem for two nations which are said to be economically 
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symmetric, meaning they have equal demands for each other’s currency under a 

given exchange rate. Additionally, Schwartz considers a special scenario where the 

currency exchange rate is fixed by one nation’s central bank in order to fulfill some 

economic purposes. 

In [17], tariff optimization problem is examined based on maximization of gain 

function. Two nations involved in non-cooperative trade game is examined and the 

Nash equilibrium triple of values are obtained. Namely tariffs imposed by each 

nation on imports of a competitor and currency exchange rate. System of equations 

solving the trade gain maximization problem is clearly formulated based on 

abstract foreign currency demand functions for each nation and the ultimate results 

are illustrated with special examples of these functions. 

Within the paper, gain functions for each nation involved in non-cooperative trade 

are defined. For these functions, the maximization problem is solved under Nash’s 

sense. Next, the exchange rate is defined as a solution to an equation matching the 

foreign currency demand functions. This leads to the system of equations involving 

a pair of foreign currency demand functions which play a key role in determining 

the strength and economic power of a given nation relative to its competitor. 

Additionally, the paper defines a notion of symmetry of economies and offers 

special cases of the pairs of foreign currency demand functions by which the trade 

gain maximization problem is solved. The functions correspond to symmetric and 

asymmetric cases separately. 

Obviously, there are many more models and ideas regarding the definitions of gain 

from trade and what components should it include. Some of the components are 

qualitative in nature, like leisure or units of labor measured in qualitative means. 

Basically, all trade scenario can be transformed as a game as long as there is a strictly 

defined trade gain function and some control variables like a tariff imposed on 

imported commodities, by manipulating which, benefits from gain is changing for 

each player. 
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Portfolio theory began with the development of ideas which were mostly 

qualitative in nature. In the beginning of 20th century investors used to mostly put 

their attention to some qualitative measures of performance. While this approach 

overlooked may important factors widely known today, it was one of rare options 

available in the science field by those times. Some of the qualitative measures are 

still commonly used today. 

One of the first attempts to quantify the factors influencing the portfolio 

performance was introduced by Williams [16] in 1938. In that time, information 

flow about stocks was too slow and investors simply used to bet on the prices which 

they thought were at their best. Williams captured time as an important variable 

to introduce in portfolio construction process. He focused on dividend discount 

model. 

It was until 1952 years that this model was one of the rare quantitative options 

investors had. In 1952, Harry Markowitz [18] proposed an important idea of 

portfolio selection, later named as modern portfolio theory. Within this model, 

risk-return combination is clearly illustrated by the use of quantitative variables 

only – expected return and variance. This model illuminates the idea of 

diversification and explains the benefits of holding multiple assets having the same 

expected return but low correlation. So holding multiple risky assets can eliminate 

the portion of risk which would be impossible by holding a single asset with the 

equivalent return. The concept of efficient frontier of risky assets played a 

significant role in understanding the combination of risk and return. This paper 

gave rise to the completely new field now known as quantitative finance. 

In [19] an efficient diversification scheme is examined. Importance of negatively 

correlated asset returns is outlined in a portfolio consisting of large number of 

securities. The effect of correlations on overall portfolio risk measured by variance 

is illustrated and the benefits of dividing up an investment are shown. 
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Later developments of the model were seen as the Capital Asset Pricing Model 

developed by several economists independently. Most prominent of those is 

Sharpe’s paper [20]. Here he proposes a model of market equilibrium taking the 

risk measured by volatility into account. Introduction of beta was a valuable tool 

for capturing the relation of an individual asset’s risk to the market. Later on, beta 

found its applications in many other academic researches, most notable of which 

are the theories related to risk measured as Value at Risk which we later apply. The 

model can be thought of as an important extension of the Markowitz theory. 

Although beta is a measure estimating the linear relation of an individual asset’s 

sensitivity to the market, there arose a need for downside risk measure interpreting 

a risk as a threat to lose. Put another way, risk should have been regarded as a 

possibility that the returns drop to a certain threshold level making the portfolio 

(or an individual asset) lose its value. 

Portfolio optimization approach with Mean-Minimum Return Level (MRL) – 

Expected Bounded First Passage Time Framework (FPT) is introduced in [21]. The 

paper begins with motivation under introducing the FPT as a third dimension for 

optimal portfolios. The three dimensional model examined within this paper takes 

the investment horizon into account and computes FPT accordingly. Ultimately, 

the efficient surface of risky portfolios is obtained. The aim is to construct a model 

which delivers the best performance in the sense that safety is taken as a priority. 

In order to concentrate on the contribution of the paper, MRL is taken as a 

downside risk measure which replaces standard dispersion measures. Once having 

MRLs and portfolio expected returns computed for different sets of asset weights, 

the framework is extended by introducing expected First Passage Time bounded 

by investment horizon as a third dimension used for decision making. This is done 

by computing the expectation of the minimum between the investment horizon 

and the First Passage Time of portfolio return process towards the minimum level. 

Once all three quantities for a given set of portfolio weights are in place, the best 

combination of them is defined by maximizing MRL and the expected bounded 
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first passage time for a given expected return of a portfolio. The ultimate result is 

an efficient surface of risky portfolios. This can be regarded as the three-

dimensional counterpart to efficient frontier in classical Mean-Variance model. 

The paper is structured in four main parts. The second section examines the 

differential equations which represent the multi-dimensional Ito’s processes and 

constructs the portfolio process. Within this section, it is shown that in order for 

the portfolio wealth to drop to its minimum level, the Geometric Brownian Motion 

that determines the portfolio wealth must reach the level which we call the 

Minimum Return Level. This brings us to the next, third section. In this section 

the MRL is formally defined according to its probability function. The fourth 

section overviews the third dimension of the model—expected bounded First 

Passage Time towards MRL. This value consists of two parts—the probability 

density function and the cumulative probability function of the First Passage Time. 

The final part, section five deals with the model construction. It combines all three 

dimensions and obtains an efficient surface of risky portfolios. 

On a final note, as far as applicability of the model is concerned, it is obviously 

impossible to continuously rebalance the portfolio in order to maintain the 

constant weights. However, one can adopt some discretization methodology to find 

the optimal interval for making trades and taking transaction costs into account at 

the same time. 

Value at Risk (VaR) was introduced by JP Morgan in early 1990s. Since then, it has 

become a major benchmark instrument in the hands of financial institutions and 

regulators for measuring risk. Some theories appeared in the late 90s which 

promoted application of VaR and MaxVaR in portfolio management. Bookstaber 

[22] published a paper with some critical values about classical risk management. 

In 2004, Boudoukh et al. [23] did research about computing long horizon VaR for 

portfolios exposed to mark to marketing. In this paper it is shown that VaR is a very 

useful measure of risk in a mark to market environment and the way to compute it 

is explained. Basically, VaR is a statistical measure. Specifically, a quantile of losses 
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at some confidence level indicating the highest possible loss that can be incurred 

in the worst-case scenario. There have been numerous methodologies for 

computing VaR in different circumstances. Expected Tail Loss (ETL, aka Expected 

Shortfall), defined as the average loss beyond VaR is a coherent risk measure 

according to Artzner et al. [24] and is widely used in risk calculation and portfolio 

optimization problems. This paper provides a list of axioms a risk measure must 

satisfy in order to be coherent. Classical Markowitz optimization technique was 

translated into Mean-VaR (or Mean-ETL) framework and the usefulness of ETL 

was examined by Rockafellar et al. [25], where volatility is replaced by VaR (or 

ETL) and optimization is done based on minimization of VaR (or ETL) and 

maximization of expected returns of portfolio. 

As a result VaR played an important role in the development of probability based 

risk models. Today, there are many works related to VaR computation 

methodologies. VaR is computed based on parametric models as well as empirical 

models. Popular methods for computing the portfolio VaR is a copula based 

approach. Copula is a joint probability distribution function of uniformly 

distributed random variables on a unit square. It has become a powerful tool for 

simulation techniques. However it still exposes its weakness when it comes to 

estimate the copula function for high dimensions. Parametric family of copula 

functions called Archimedean copulas offers a wide range of functions with 

different dependence structures. Theory of copulas is new and still an emerging 

field. A good reference to a classic book is [26]. 

In [27], optimal portfolios with two assets are examined. Copula functions are 

applied to model the dependence structure between returns of assets as random 

variables. Portfolio with two assets are taken and an Archimedean copula is chosen 

to fit the data. Copulas are used to jointly simulate the returns of the assets. 

Ultimately different portfolios are obtained based on the Conditional Value at Risk 

and expected return as a combination. 
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Value at Risk for regulators provides a tool for forcing financial institutions to 

maintain a certain threshold capital idle in order to ensure safety. [28] is a good 

reference exploring the application of VaR as a tool for measuring safe level of 

Capital Requirement. This paper examines the portfolio policies adopted by 

expected utility maximizing agents under Value at Risk Capital Requirement 

regulation compared with exogenously imported VaR Limit and Limit Expected 

Loss regulations. There is a trade-off between the threshold capital required to 

maintain the solvency and health of a financial institution and the effective 

management of capital. The results obtained makes the Basel regulations more 

optimal and rational from the standpoint of regulators on the one hand, and 

institutions on the other. 

Despite the fact that Value at Risk is computationally simple and numerous models 

developed so far give satisfactory results, Engle and Manganelli [29] proposed a 

new estimation of a quantile level of future portfolio values conditioned on current 

information named Conditional Value at Risk by Quantile Regression. This model 

does not require assumption that portfolio returns are from some particular 

distribution or they are independently and identically distributed. Within the 

paper, portfolio risks are defined based on this new measure and the advantage of 

the approach is supported by examples constructed by evolutionary generic 

algorithms producing empirical evidence of this methodology being able to adapt 

to new risk environment. 

In [30], Engle and Manganelli extend [29] and show that the historical simulation 

method which they provide is just a special case of CAViar framework. In addition, 

they introduce the extreme value theory for CAViar and compute the expected loss 

as a quantile level conditioned by the VaR level. So expected loss within the 

CAViar framework is defined similarly as for ordinary VaR. The performance is 

then checked by Monte Carlo simulation. 

Statistical theory of extremes is used in [31] to justify it being more natural and 

robust approach in risk management computations. Specifically, this paper deals 
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with extreme tails and uses probability first as a measure of extremeness of events 

and then to determine the proper threshold level for capital. 

In [32], extreme stock price movements are presented. The author investigates the 

economic booms and crashes followed by abnormal stock price movements. The 

approach defined is supported by the example consuming data from the most 

traded stocks on the New York Stock Exchange from 1885-1990. Finally, it is 

shown empirically that returns of stocks in during extreme cases follow a Frechet 

distribution. 

Chen et al. [33] proposes the portfolio optimization problem based on semi variance 

of uncertain variables. Within this model, the returns of assets are estimated based 

on experts’ subjective views. Models like uncertain semi-variance have parameters 

which are hard to quantify, but in uncertain situations subjective views are useful 

or at least the only solution. Closely related idea to the uncertain semi- variance 

model is the semi-absolute deviation model proposed by Qin et al [34]. Within this 

paper, authors examine the portfolio selection by several mean-semi absolute 

deviation adjusting models to measure tradeoff between risk and return. Views 

about the asset returns are obtained from expert opinions like in semi-variance 

model. 

The concept of Brownian motion arose from an experiment by a British botanist, 

Robert Brown in 1828 where he observed irregular movement of suspended pollen 

grain in water. Water molecules cause motion of the pollen grain which is 

described by the famous Brownian motion model, otherwise known as the Wiener 

Process [35]. Wiener constructed the first mathematically rigorous description of 

Brownian motion. 

Levy [36], [37] is credited with the discoveries of important properties of Brownian 

motion. Within these works, some quite non-intuitive properties are presented. 

More of famous works dedicated to the topics described above are listed in the 

bibliography for a convenient reference. 
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Chapter 1 Equations for Nash-equilibrium tariffs and 

exchange rate 

1.1 Foreign Currency Demand Functions 

This chapter deals with generalization of a model proposed by Schwartz [15]. Let 

us assume two nations exchange 𝑁 different commodities for which the demand 

and prices are known. For the domestic and foreign nations, annual demand and 

corresponding prices measured in national currency are 𝑑1, . . . , 𝑑𝑁 , 𝑝1, . . . , 𝑝𝑁 and 

𝑑1
∗, . . . , 𝑑𝑁

∗ , 𝑝1
∗, . . . , 𝑝𝑁

∗  respectively. If we take 𝑥  as an exchange rate of a unit of 

foreign currency in terms of domestic currency units, then the domestic and 

foreign nations’ demand for foreign currency are given by 

𝐷(𝑥) ≔
1

𝐶𝑁
∑ 𝐸̅(𝑝𝑘

∗𝑑𝑘,
𝑝𝑘

𝑝𝑘
∗ > 𝑥)

𝑁

𝑘=1

 
(1.1) 

and 

𝐷∗(𝑥) ∶=
1

𝐶𝑁
∗ ∑ 𝐸̅(𝑝𝑘𝑑𝑘

∗ ,
𝑝𝑘

𝑝𝑘
∗ < 𝑥)

𝑁

𝑘=1

 
(1.2) 

respectively, where 𝐶𝑁 = ∑ 𝐸̅(𝑝𝑘
∗𝑑𝑘)

𝑁
𝑘=1 , 𝐶𝑁

∗ = ∑ 𝐸̅(𝑝𝑘𝑑𝑘
∗)𝑁

𝑘=1  and 𝐸̅  is the 

mathematical expectation under  𝑃̅ on a probability space (Ω̅, 𝐹̅, 𝑃̅). If we introduce 

the extended probability space (Ω, 𝐹, 𝑃), where 

Ω = Ω̅ × {1, . . . , 𝑁}, 𝑃(𝐴, 𝑘) =
1

𝑁
 𝑃̅(𝐴), 𝐴 𝜖 𝐹̅ 

and define random variables 𝑝, 𝑝∗, 𝑑, 𝑑∗ by 

𝑝(𝜔, 𝑘) = 𝑝𝑘(𝜔), 𝑝∗(𝜔, 𝑘) = 𝑝𝑘
∗(𝜔), 

𝑑(𝜔, 𝑘) = 𝑑𝑘(𝜔), 𝑑∗(𝜔, 𝑘) = 𝑑∗(𝜔), 

then (1.1), (1.2) demand functions above can be rewritten as probability 

distribution functions 

𝐷(𝑥) = 𝐸 (𝑝∗𝑑,
𝑝

𝑝∗
> 𝑥),   𝐷∗(𝑥) = 𝐸 (𝑝𝑑∗,

𝑝

𝑝∗
< 𝑥) (1.3) 
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which indicate that the domestic nation will import the commodity if 
𝑝

𝑝∗
> 𝑥 and 

the foreign nation will import if 
𝑝

𝑝∗
< 𝑥. Since 𝑥 is the value of an unit of foreign 

currency in terms of the domestic currency units, increasing the exchange rate 

makes foreign commodities more expensive for the domestic nation and the 

domestic commodities less expensive for the foreign nation. Therefore, 𝐷  is a 

decreasing function of 𝑥 and 𝐷∗  is an increasing function of 𝑥. These functions 

have the following properties 

𝐷(0) = 1, 𝐷(∞) = 0, 𝐷∗(0) = 0, 𝐷∗(∞) = 1. 

 

Figure 1.1: 𝐷(𝑥) and 𝐷∗(𝑥) 
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Figure 1.2: 𝐷(𝑥) and 𝐷∗(1/𝑥) 

 

From (1.1) and (1.2) it is clear that the foreign currency demand functions are 

derived from the known probability distributions of prices and quantities of the 

exchanged commodities. Our main interest lies in the shape of these functions, not 

how they are obtained. So we mostly focus on the ready-made functions 

themselves and introduce some special cases of them carrying intuitive economic 

interpretations. From the practical perspective, one should obtain the functions 

from the equations above. While it is true that the economic strength and 

dominance of one nation over another is determined by these functions, as we will 

see later, from these functions alone, it is impossible to anticipate which nation will 

be able to impose a greater tariff over the competitor. 

 

1.2 Introducing Currency Exchange Rate 

For an exchange rate 𝑥, solving the equation 

𝑥𝐷(𝑥) = 𝐷∗(𝑥) (1.4) 
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for 𝑥 yields the equilibrium rate 𝑥 = 𝑒. 

 

Figure 1.3: Solution to 𝑥𝐷(𝑥) = 𝐷∗(𝑥), 𝐷(𝑥) and 𝐷∗(𝑥) are taken arbitrarily 

This equation determines the equilibrium exchange rate when both nations 

practice an unrestricted free trade policy. Left side of the equation is the foreign 

currency demand of a domestic nation and the right side is the foreign currency 

demand of a foreign nation, both measured in domestic currency units. 

Now suppose the domestic and foreign governments impose the following tariffs 

on imported commodities: 1 − 𝜃 and 1 − 𝜃∗. Then the domestic nation will import 

the commodity if 
𝑝𝜃

𝑝∗ > 𝑥 , and the foreign nation will import if 
𝑝∗𝜃∗

𝑝
>

1

𝑥
. Taking 

tariffs into account, the demand functions (1.3) now become 

𝐷 (
𝑥

𝜃
) =

𝐸(𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗})

𝐸(𝑝∗𝑑)
,   𝐷∗(𝑥𝜃∗) =

𝐸(𝑝𝑑∗1{𝜃∗𝑝∗𝑥>𝑝})

𝐸(𝑝𝑑∗)
, 

where 

𝐸(𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗}) =
1

𝑁
∑ 𝐸̅ (𝑝𝑘

∗𝑑𝑘1{𝜃𝑝𝑘>𝑥𝑝𝑘
∗}) ,

𝑁

𝑘=1
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𝐸(𝑝𝑑∗1{𝜃∗𝑝∗𝑥>𝑝}) =
1

𝑁
∑ 𝐸̅ (𝑝𝑘𝑑𝑘

∗1{𝜃∗𝑝𝑘
∗𝑥>𝑝𝑘}

) ,

𝑁

𝑘=1

 

𝐸(𝑝∗𝑑) =
𝐶𝑁

𝑁
,   𝐸(𝑝𝑑∗) =

𝐶𝑁
∗

𝑁
 

and the relation (1.4) is rewritten as 

𝑥𝐷 (
𝑥

𝜃
) = 𝐷∗(𝜃∗𝑥) (1.5) 

from which it is clear that the equilibrium exchange rate 𝑥 = 𝑒 now depends on 𝜃 

and 𝜃∗. Equation (1.5) always has the solution 𝑒 = 0,
1

𝑒
= 0, or 𝜃 = 𝜃∗ = 0, which 

do not carry any useful economic sense. Such conditions would restrict the 

involvement of both nations in trade. To rule out these possibilities, we claim 
1

𝑀
≤

𝑒 ≤ 𝑀, for some large number 𝑀 and 
1

𝑀
≤ 𝜃 ≤ 1,

1

𝑀
≤ 𝜃∗ ≤ 1. 

One important note here is that, although we defined the upper and lower bounds 

for the tariffs that can be imposed by both nations, and the mathematics is fine 

with any solution within that range, normally the numbers 𝜃 and 𝜃∗ are close to 1. 

In realistic scenario, it is hard to find a number significantly less than one. 

Regardless of that, we do not restrict ourselves to obtain numbers which are very 

realistic. Our goal is to obtain numbers those fit well within the mathematical 

restrictions and give a good meaning to the ultimate results as a whole. 

 

1.3 Gain Functions 

Since the ultimate goal of both nations is to set the tariffs unilaterally which will 

maximize their gain from trade, we have to find the Nash equilibrium point, the 

pair (𝜃, 𝜃∗). The gain functions of each nation are given by 

𝐺(𝑒, 𝜃, 𝜃∗) = 𝐸 (𝑝𝑑,
𝑝∗

𝑝
<

𝜃

𝑒
) − 𝐸 (𝑝𝑑∗,

𝑝∗

𝑝
>

1

𝑒𝜃∗
)

= 𝐸 (
𝑝

𝑝∗
1

(
𝑝
𝑝∗>

𝑒
𝜃
)
𝑝∗𝑑) − 𝐸 (𝑝𝑑∗1

(
𝑝
𝑝∗>

𝑒
𝜃
)
)

= −∫ 𝑦𝐷′(𝑦)𝑑𝑦 − 𝐷∗(𝜃∗𝑒),
∞

𝑒/𝜃

 

(1.6) 
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and 

𝐺∗(𝑒, 𝜃, 𝜃∗) = 𝐸 (𝑝∗𝑑∗,
𝑝

𝑝∗
< 𝜃∗𝑒) − 𝐸 (𝑝∗𝑑,

𝑝

𝑝∗
>

𝑒

𝜃
)

= ∫
1

𝑦
𝐷∗′ (

1

𝑦
) 𝑑𝑦 − 𝐷 (

𝑒

𝜃
)

∞

1
𝜃∗𝑒

, 

(1.7) 

respectively. Since the equilibrium exchange rate is the function of tariffs, we have 

𝑒 = 𝑒(𝜃, 𝜃∗). Our goal is to find the Nash equilibrium for the nations, i.e. such pair 

(𝜃, 𝜃∗). Our goal is to find the Nash equilibrium for the nations, i.e. such pair 

(𝜃, 𝜃∗) that relations 

max
𝜃

𝐺(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗) = 𝐺(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗), 

max
𝜃∗

𝐺∗(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗) = 𝐺∗(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗) 

hold. The Nash pair is found from the system of equations 

𝜕

𝜕𝜃
𝐺(𝑒, 𝜃, 𝜃∗) = 0, 

(1.8) 

𝜕

𝜕𝜃∗
𝐺∗(𝑒, 𝜃, 𝜃∗) = 0, 

(1.9) 

Given the currency demand functions 𝐷(𝑥) and 𝐷∗(𝑥), solution to the system of 

equations (1.8),(1.9) leads to yet another system of equations (see Appendix A) 

𝐷 (
𝑒

𝜃
) = 𝜃∗(1 − 𝜃)𝐷∗′(𝜃∗𝑒) (1.10) 

𝐷 (
𝑒

𝜃
) =

𝑒

𝜃
(𝜃∗ − 1)𝐷′(

𝑒

𝜃
) (1.11) 

 

Remark: According to (1.5), 𝐷 (
𝑒

𝜃
) =

𝐷∗(𝜃∗𝑒)

𝑒
. Then (1.10) can be rewritten as 

𝐷∗(𝜃∗𝑒) = 𝑒𝜃∗(1 − 𝜃)𝐷∗′(𝜃∗𝑒) (1.12) 

Denoting  𝑒̅ =
1

𝑒
, 𝐷̅(𝑥) = 𝐷∗ (

1

𝑥
), (1.12) now becomes 

𝐷̅ (
𝑒̅

𝜃∗
) =

𝑒̅

𝜃∗
(𝜃 − 1) 𝐷̅′ (

𝑒̅

𝜃∗
), 

which is similar to (1.11). 

Note that 𝜃 plays a role in the first component of (1.6) and the second component 

of (1.7). At the first glance it seems that increasing the value of 𝜃  (meaning 

absorbing less portion from the value of imported commodities) causes the gain of 
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the first nation to decrease and vice versa. Similarly, 𝜃∗ participates in the second 

component of (1.6) and the first component of (1.7). However, since the currency 

exchange rate 𝑒 is the function of 𝜃 and 𝜃∗, by only observing these equations, it is 

unclear what values of tariffs will be beneficial for each nation. 

 

1.4 Solution to the Gain Maximization Problem 
At this point, if the demand functions for foreign currency of each nation are 

known, from (1.10) and (1.11) the Nash equilibrium pair (𝜃, 𝜃∗) can be found. 

Ultimately putting these values in (1.5) and solving for 𝑥  will result in the 

equilibrium triple (𝑒̂, 𝜃, 𝜃∗) = (𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗). Hence the triple satisfy 

𝑒̂𝐷 (
𝑒̂

𝜃
) = 𝐷∗(𝜃∗𝑒̂) 

(1.13) 

𝐷 (
𝑒̂

𝜃
) = 𝜃∗(1 − 𝜃)𝐷∗′(𝜃∗𝑒̂) 

(1.14) 

𝐷 (
𝑒̂

𝜃
) =

𝑒̂

𝜃
(𝜃∗ − 1)𝐷′(

𝑒̂

𝜃
) 

(1.15) 

Obviously, one should check whether the extremum points given by the solution 

to (1.10) and (1.11) are really maximums. Differentiating the derivatives of the gain 

functions once again and checking the signs for the equilibrium points serve this 

purpose. So the following inequalities must hold 

𝜕2

𝜕𝜃2
𝐺(𝑒̂, 𝜃, 𝜃∗) < 0, 

𝜕2

𝜕𝜃∗2 𝐺∗(𝑒̂, 𝜃, 𝜃∗) < 0 

which means (see Appendix C) 

𝜃∗2
(1 − 𝜃)𝑒𝜃̂𝐷∗′′(𝜃∗𝑒̂) − 𝜃∗𝐷∗′(𝜃∗𝑒̂) −

𝑒𝜃̂ 𝜃 − 𝑒̂

𝜃2
𝐷′ (

𝑒̂

𝜃
) < 0   

(1.16) 

𝜃(𝜃∗𝑒𝜃̂∗ + 𝑒̂)𝐷′ (
𝑒̂

𝜃
) − (1 − 𝜃∗)𝑒𝜃̂∗𝑒̂𝐷′′ (

𝑒̂

𝜃
) > 0    

(1.17) 

Hence we can formulate our main result: If pair (𝜃, 𝜃∗)𝜖 (
1

𝑀
, 1)

2

 is a unique 

solution (1.13), (1.14), (1.15), (1.16), (1.17), then it is the Nash equilibrium of the 

game. 
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As an important note, there can be two kinds of intersections for (1.4). According 

to Schwartz, the intersection occurring over the decreasing interval of 𝑥𝐷(𝑥) gives 

some useful economic and mathematical insights (see [15]). This is called a normal 

configuration and was illustrated in Figure 1.3. Another case is the intersection 

point occurring at an increasing interval of the function. The following figure 

illustrates this case. 

 

Figure 1.4: Solution to 𝑥𝐷(𝑥) = 𝐷∗(𝑥), Abnormal configuration 

Economically interpreted, this scenario leads to misconception since if both 

functions are increasing, their derivatives with respect to the exchange rate is 

positive which does not make sense. The functions must be responding to changing 

exchange rate in an opposite way. 

 

1.5 Symmetry and Asymmetry of Economies 
Demand functions differ from nation to nation. Specifically, two nations are said 

to be economically symmetric if 

𝐷(𝑥) = 𝐷∗ (
1

𝑥
), 

(1.18) 
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which implies that their demand for each other’s currency are equal under any 

given exchange rate. Economically, this means that on average they produce and 

exchange commodities of equal value. In case of symmetric nations, from (1.5) we 

can simply conclude that 𝑒(𝜃∗, 𝜃) =
1

𝑒(𝜃,𝜃∗)
. Thus, 𝑒(𝜃, 𝜃∗) = 1 , which makes 

perfect sense. Since two nations have equal demand for each other’s currency, 

neither is able to employ dominant economic power over the counter party, so the 

Nash equilibrium will occur at equal tariffs and a unit exchange rate. More 

rigorously, since 𝐺∗ (
1

𝑒(𝜃,𝜃∗)
, 𝜃∗, 𝜃) = 𝐺(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗),  from the result of Game 

Theory ([38],p.134) follows that  𝜃 = 𝜃∗ for Nash point (𝜃, 𝜃∗). This fact simplifies 

the computations above. Specifically, taking 𝜃 = 𝜃∗ and 𝑒 = 1, (1.11) becomes 

𝜃𝐷 (
1

𝜃
) = (𝜃 − 1)𝐷′(

1

𝜃
) 

(1.19) 

Given the function 𝐷(𝑥), the equilibrium pair (𝜃, 𝜃∗) is found. 

However, more realistic case is economically asymmetric nations having different 

demands for each other’s currency. In this case, the equality (1.18) no longer holds. 

So the nations will have different tariffs imposed on imported commodities. 

In [15], the following demand functions for symmetric nations were considered: 

𝐷(𝑥) = 𝐷∗ (
1

𝑥
) = (1 + 𝑥)−2. Since two nations are economically symmetric, we 

have  𝜃 = 𝜃∗, 𝑒̂ = 1. We use (1.19) to solve the equation for 𝜃. Given 

𝐷(𝑥) = 𝐷∗ (
1

𝑥
) = (1 + 𝑥)−2 

the derivative of the function is 

𝐷′(𝑥) = −
2

(1 + 𝑥)3
, 

putting it into (1.19) gives 
𝜃

(1 +
1
𝜃)

2 = (𝜃 − 1)(−
2

(1 +
1
𝜃)

3), 

solving for 𝜃 yields 
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−
2𝜃

1 + 𝜃
(𝜃 − 1) = 1 

from which we trivially get 

𝜃 = 𝜃∗ =
1

3
 

The solution (𝑒̂, 𝜃, 𝜃∗) = (1,
1

3
,
1

3
)  agrees with Schwartz’s results. So in case of 

symmetric nations with the foreign currency demand functions given by 𝐷(𝑥) and 

𝐷∗(
1

𝑥
), we obtained the Nash equilibrium point at equal tariffs to be imposed that 

maximize the gain for both nations from trade. However, neither is able to tax the 

competitor by a greater amount than itself being taxed by. In addition, we consider 

two more examples. 

Symmetric Case: 

Here we consider one more symmetric case. Suppose 𝐷(𝑥) = 𝐷∗ (
1

𝑥
) = (1 −

𝛼𝑥)+, 𝛼 < 1. Similarly applying (1.19) leads to the following solution. Given 

𝐷(𝑥) = 𝐷∗ (
1

𝑥
) = (1 − 𝛼𝑥)+, 

the derivative is 

𝐷′(𝑥) = −𝛼, 

putting it in (1.19) gives 

𝜃 (1 −
𝛼

𝜃
) = (𝜃 − 1)(−𝛼), 

from which 

𝜃 − 𝛼 = 𝛼 − 𝛼𝜃, 

solving for 𝜃 yields 

𝜃 = 𝜃∗ =
2𝛼

1 + 𝛼
. 

So the Nash equilibrium is (𝑒̂, 𝜃, 𝜃∗) = (1,
2𝛼

1+𝛼
,

2𝛼

1+𝛼
). Similarly, given any value 𝛼, 

which defines the shapes of the demand functions, the equilibrium point will occur 

at the same tariffs for both nations. 

Asymmetric case: 
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Now we generalize the problem to a more common asymmetric case. Suppose 

𝐷(𝑥) = 𝐞𝐱𝐩(−𝛿𝑥) , 𝛿 > 0, 𝐷∗(𝑥) = (𝛼𝑥𝒆𝒙𝒑(𝛽𝑥)) ∧ 1. 𝛼, β > 0. Then solving (1.5) 

yields the equilibrium exchange rate 

𝑒 =
−𝜃ln (𝛼𝜃∗)

𝜃𝜃∗𝛽 + 𝛿
. 

The Nash equilibrium condition (1.10), (1.11) gives 

𝜃 =
𝛿(𝜃∗ − 1) ln(𝛼𝜃∗) − 𝛿

𝜃∗𝛽
 

(see Appendix B) and 

𝛽𝜃∗(𝜃∗ − 1) = (𝜃∗𝛽 − 𝛿(𝜃∗ − 1) ln(𝛼𝜃∗) + 𝛿)(𝜃∗ − (𝜃∗ − 1) ln(𝛼𝜃∗)). 

Specifically, if 𝛼 = 0.01, 𝛽 = 2, 𝛿 = 2.5, the Nash equilibrium pint is (𝑒̂, 𝜃, 𝜃∗) =

(0.81, 0.54, 0.73). The equilibrium exchange rate which is the solution of (1.5) is 

illustrated in Figure (1.5). 

 

Figure 1.5: Solution to 𝑥𝐷(𝑥) = 𝐷∗(𝑥) for 𝐷(𝑥) = 𝒆𝒙𝒑(−2.5𝛿) , 𝐷∗(𝑥) =

0.01𝑥𝒆𝒙𝒑(2𝑥) ∧ 1 
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Here the Nash equilibrium point was obtained for the case where 𝐷(𝑥) ≠ 𝐷∗(
1

𝑥
). 

Solution to the system of equations (1.13), (1.14), (1.15) leads to a domestic nation 

imposing greater tariff than the foreign nation. Initially, based only on the shapes 

of the functions 𝐷(𝑥)  and 𝐷∗(𝑥) , it is impossible to identify which nation is 

“economically stronger” and therefore will have a greater optimal tariff. 

From the asymmetric case here, we intentionally took the functions 𝐷(𝑥) and 

𝐷∗(𝑥) such that solving the system of equations (1.13), (1.14), (1.15) explicitly for 

the currency exchange rate and at least one of the thetas (in this case 𝜃) were 

possible. Obviously, unlike the situation above, depending on the functions 𝐷(𝑥) 

and 𝐷∗(𝑥), is might be impossible to provide an explicit solution. 

 

1.6 Effects of Currency Demand Functions on Equilibrium 

Point 

Clearly, the economic strength of a nation relative to its competitor is determined 

by the foreign currency demand function. Economists may give a precise answer 

to whether greater demand for the competitor’s currency is advantageous or not 

for a given nation over another, however in our model we rely completely on 

mathematical outcome and we define economic dominant power of a nation over 

the competitor as the ability to impose a greater tariff according to the system of 

equations (1.13), (1.14), (1.15). Put another way, a nation is said to be economically 

dominant over the competitor if after solving the system of equations above, it has 

the Nash equilibrium tariff greater than that of a competitor. However, this fact is 

not directly observable from the currency demand functions. It would be desirable 

to be able to identify patterns defining which nation is stronger economically in 

that sense by comparing the currency needs they have relative to each other. 

Ultimately it all depends on the outcome of the system. We illustrate some 

examples of changing demand functions and their effects on the equilibrium. 

Case 1: Stronger demand function for the second nation 



49 
 

Originally we had 𝐷∗(𝑥) = 𝛼𝑥𝒆𝒙𝒑(𝛽𝑥)  where 𝛼 = 0.01  and 𝛽 = 2.  Now 

strengthen the demand of the second nation by making 𝛽 = 3.  The graphs of 

𝑥𝐷(𝑥) = 𝐷∗(𝑥) would now be slightly different 

 

Figure 1.6: 𝐷(𝑥) = 𝒆𝒙𝒑(−2.5𝑥) , 𝐷∗(𝑥) = 0.01𝑥𝒆𝒙𝒑(3𝑥) 

The Nash Equilibrium point we obtain based on this modified function now is: 

(𝜃, 𝜃∗) = (0.63, 0.69) . Since the tariffs are defined as (1 − 𝜃, 1 − 𝜃∗) =

(0.37, 0.31), we have the first nation still being able to impose a greater tariff than 

the second nation. Recall that the initial results were (𝜃, 𝜃∗) = (0.54, 0.73), so 

(1 − 𝜃, 1 − 𝜃∗) = (0.46, 0.27). 

One might have concluded before, that greater foreign currency demand function 

causes a nation to be trapped by the necessity of the imports from the competing 

nation and therefore, this gives the competing nation some economic dominant 

power resulting in greater tariff to be imposed. However this logic does not directly 

translate into the outcome of the system of equations above. 

Case 2: Stronger demand function for the second nation 
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Now let us take 𝛽 = 4  to make 𝐷∗(𝑥)  even stronger. So, now 𝐷∗(𝑥) =

0.01𝑥𝒆𝒙𝒑(4𝑥). 

 

Figure 1.7: 𝐷(𝑥) = 𝒆𝒙𝒑(−2.5𝑥) , 𝐷∗(𝑥) = 0.01𝑥𝒆𝒙𝒑(4𝑥) 

 

The Nash equilibrium point now is (𝜃, 𝜃∗) = (0.68, 0.66) . So the tariffs are 

(1 − 𝜃, 1 − 𝜃∗) = (0.32, 0.34). Here the second nation is already able to tax the 

competitor by a greater amount. We can conclude that changing the constant 

parameters of the function, and therefore its shape does not give a predictable 

answer to what it might result in. 

The value of 𝛽 which would make the tariffs equal for the first and the second 

nation under these functions is 1.48. In this case we would have (𝜃, 𝜃∗) =

(0.73, 0.73) and (1 − 𝜃, 1 − 𝜃∗) = (0.27, 0.27). The functions are illustrated in the 

following figure. 
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Figure 1.8: 𝐷(𝑥) = 𝒆𝒙𝒑(−2.5𝑥) , 𝐷∗(𝑥) = 0.01𝑥𝒆𝒙𝒑(1.48𝑥) 

 

1.7 Dominant Foreign Currency Demand Functions 

The economy of a given nation, whose equilibrium tariff to be imposed on 

imported commodities is greater than the one of its competitor, is called 

economically dominant. We have stated that the foreign currency demand 

functions ultimately determine which nation will be able to impose a greater tariff. 

Regardless of inability to anticipate which nation will possess such economic power 

based only on the demand functions, we can review some examples of functions 

leading to an economic dominance. We refer to the foreign currency demand 

function leading to an economic dominance (in that sense) as dominant function. 

Basically, the shapes of these functions expose the influence of the exchange rate 

on the currency demand. So different shapes can be interpreted differently. In 

particular, more concave or smooth the function is, less sensitive it is to the change 

of the equilibrium. Likewise, more convex function exposes much sensitivity to the 

exchange rate. 
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The solution to the system of equations (1.13), (1.14), (1.15) can expose a total 

dominance of one nation over another. This is reflected in one tariff to be zero, 

thus one nation being unable to tax the competitor while the other nation can 

impose any tariff. This case leads to an economic nonsense. Namely, if the 

dominant nation imposes a tariff equal to 1, which means that it absorbs 100% of 

the value of imported commodities. This would lead to another nation abandon 

trading with such a competitor altogether. At the same time, since there is no 

commodities flow from one nation to another, the exchange rate also loses its sense. 

Since the mathematical model we provide assumes that the trading continues as 

long as the indicator conditions are met in (1.3), we have to logically restrict such 

possibilities. 

In Section 1.2, we claimed that 
1

𝑀
≤ 𝑒 ≤ 𝑀, for some large number 𝑀 and 

1

𝑀
≤ 𝜃 ≤

1,
1

𝑀
≤ 𝜃∗ ≤ 1.  Also the conditions 𝐷(0) = 1, 𝐷(∞) = 0, 𝐷∗(0), 𝐷∗(∞) = 1  must 

be respected. This restriction averts the possibility of the scenario described above. 

However, the demand functions which can cause such situations deserve some 

attention. Such functions are not generalized in this thesis, so we do not provide 

the properties they must satisfy in order to lead to such case. So instead of 

abstraction, here is a list of such pairs of 𝐷(𝑥) and 𝐷∗(𝑥). We are interested within 

the domain of 0 ≤ 𝑥 ≤ 1. 

Example 1: 

Foreign currency demand function of the first and the second nations are given by 

𝐷(𝑥) = (1 − 𝑥)+, 𝐷∗(𝑥) = 𝑥 ∧ 1 

where (. )+ denotes the maximum between the expression inside the parenthesis 

and zero. ∧ denotes the minimum between the two sides of the symbol. These 

functions are illustrated in Figure 1.9. Their derivatives are 𝐷′(𝑥) = −1  and 

𝐷∗′(𝑥) = 1 respectively. Putting 𝐷(𝑥) and 𝐷∗(𝑥) in (1.5) yields 

𝑒 (1 −
𝑒

𝜃
) = 𝜃∗𝑒 

from which eliminating 𝑒 and rearranging the terms gives 
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𝜃 − 𝑒 = 𝜃𝜃∗, 

solving for 𝑒 results in 

𝑒 = 𝜃(1 − 𝜃∗). (1.20) 

Once having 𝑒 expressed in terms of 𝜃 and 𝜃∗, we can solve the equation (1.10) 

which looks like 

1 −
𝑒

𝜃
= 𝜃∗(1 − 𝜃), (1.21) 

putting (1.20) into (1.21) gives 

1 −
1

𝜃
𝜃(1 − 𝜃∗) = 𝜃∗(1 − 𝜃), 

canceling and rearranging some terms yields 

𝜃∗ = 𝜃∗(1 − 𝜃) 

from which 𝜃 = 0, while the value of 𝜃∗ can be anything within the range of [0,1]. 

 

Figure 1.9: 𝐷(𝑥) = (1 − 𝑥)+, 𝐷∗(𝑥) = 𝑥 ∧ 1 

 Example 2: 



54 
 

Here we provide a square root function for one nation 

𝐷(𝑥) = 1 − √𝑥,   𝐷∗(𝑥) = 𝑥 ∧ 1 

where the second function is still the minimum between 𝑥 and 1. 

 

Figure 1.10: 𝐷(𝑥) = 1 − √𝑥,   𝐷∗(𝑥) = 𝑥 ∧ 1 

Their derivatives are given by 𝐷′(𝑥) = −
1

2√𝑥
 and 𝐷∗′(𝑥) = 1. Applying (1.5) for 

these functions gives the solution to the exchange rate as follows 

𝑒 (1 − √
𝑒

𝜃
) = 𝜃∗𝑒, 

eliminating 𝑒 on both sides gives 

√𝜃 − √𝑒 = 𝜃∗√𝜃, 

from which 𝑒 is obtained to be the following expression 

𝑒 = 𝜃(1 − 𝜃∗)2. (1.22) 

Applying 𝐷(𝑥) and 𝐷∗(𝑥) in (1.10) results in 
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1 −
√𝑒

√𝜃
= 𝜃∗(1 − 𝜃), 

(1.23) 

putting (1.22) into (1.23) yields 

1 −
√𝑒

√𝜃
= 𝜃∗(1 − 𝜃), 

this equation simplifies to 

1 − (1 − 𝜃∗) = 𝜃∗(1 − 𝜃) 

and ultimately 

𝜃∗ = 𝜃∗(1 − 𝜃) 

from which we can conclude that 𝜃 = 0, 𝜃∗𝜖[0,1]. 

Example 3: 

The next pair of functions which lead to the similar scenario are 

𝐷(𝑥) = 𝐞𝐱𝐩(−𝑥) , 𝐷∗(𝑥) = 𝑥 ∧ 1 

 

Figure 1.11: 𝐷(𝑥) = 𝒆𝒙𝒑(−𝑥) , 𝐷∗(𝑥) = 𝑥 ∧ 1 
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Differentiating of both functions gives 𝐷′(𝑥) = −𝒆𝒙𝒑 (−𝑥) and 𝐷∗′(𝑥) = 1 from 

(1.5) 

𝑒𝒆𝒙𝒑(−
𝑒

𝜃
) = 𝜃∗𝑒 

taking natural logarithms from both sides leaves 

−
𝑒

𝜃
= 𝑙𝑛𝜃∗, 

solving for 𝑒 gives 

𝑒 = −𝜃𝑙𝑛𝜃∗. 
(1.24) 

Applying (1.10) yields 

𝒆𝒙𝒑(−
𝑒

𝜃
) = 𝜃∗(1 − 𝜃), (1.25) 

solving for 𝜃∗ 

θ∗ =
𝒆𝒙𝒑 (−

𝑒
𝜃
)

1 − 𝜃
. 

(1.26) 

Putting (1.24) in (1.26) gives 

𝜃∗ = 𝒆𝒙𝒑(
𝜃𝑙𝑛𝜃∗

𝜃
)

1

1 − 𝜃
, 

simplifying the numerator, 

𝜃∗ = 𝜃∗(1 − 𝜃), 

so the result is 𝜃 = 0, 𝜃∗𝜖[0,1]. 

 

Example 4: 

Here, one of the functions is quadratic 

𝐷(𝑥) = 1 − 𝑥2, 𝐷∗(𝑥) = 𝑥 ∧ 1 
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Figure 1.12: 𝐷(𝑥) = 1 − 𝑥2, 𝐷∗(𝑥) = 𝑥 ∧ 1 

Their derivatives are 

𝐷′(𝑥) = −2𝑥, 𝐷∗(𝑥) = 1, 

(1.5) gives 

𝑒 (1 −
𝑒2

𝜃2
) = 𝜃∗𝑒, 

by solving this expression for 𝑒, we arrive at 

𝑒 = √𝜃2(1 − 𝜃∗), (1.27) 

by (1.10) 

1 −
𝑒2

𝜃2
= 𝜃∗(1 − 𝜃) 

and correspondingly by (1.27) and (1.10) 

𝜃∗ = 𝜃∗(1 − 𝜃) 

from which 𝜃 = 0, 𝜃∗𝜖[0,1]. 
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Example 5: 

Consider a logarithmic function 

𝐷(𝑥) = 1 − ln(𝑥 + 1) , 𝐷∗(𝑥) = 𝑥 ∧ 1 

 

Figure 1.13: 𝐷(𝑥) = 1 − ln(𝑥 + 1) , 𝐷∗(𝑥) = 𝑥 ∧ 1 

Derivatives of 𝐷(𝑥) and 𝐷∗(𝑥) are respectively given by 

𝐷′(𝑥) = −
1

𝑥 + 1
,   𝐷∗′(𝑥) = 1, 

again by (1.5) 

𝑒 (1 − ln (
𝑒

𝜃
)) = 𝜃∗𝑒, 

rearranging the terms and removing logarithm gives 

𝒆𝒙𝒑(1 − 𝜃∗) =
𝑒

𝜃
 

from which 

𝑒 = 𝜃 𝒆𝒙𝒑(1 − 𝜃∗), (1.28) 
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by (1.10) 

1 − ln
𝑒

𝜃
= 𝜃∗(1 − 𝜃), (1.29) 

putting (1.28) in (1.29) results in 

𝜃∗ = 𝜃∗(1 − 𝜃), 

as a result 𝜃 = 0, 𝜃∗𝜖[0,1]. 

Example 6: 

Here we have a combination of logarithmic and cubic functions 

𝐷(𝑥) = 1 − ln(𝑥 + 1) , 𝐷∗(𝑥3 ∧ 1) 

 

Figure 1.14: 𝐷(𝑥) = 1 − ln(𝑥 + 1) , 𝐷∗(𝑥) = 𝑥3 ∧ 1 

Derivatives are  

𝐷′(𝑥) = −
1

𝑥 + 1
, 𝐷∗(𝑥) = 3𝑥2. 

Applying (1.5) 

𝑒 (1 − ln
𝑒

𝜃
) = (𝜃∗𝑒)3, 
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canceling 𝑒 leaves the following expression 

1 − ln
𝑒

𝜃
= 𝜃∗3𝑒2, 

from which 

𝜃 =
𝑒

𝒆𝒙𝒑 (1 − 𝜃∗3𝑒2)
. 

Applying (1.10) 

1 − ln
𝑒

𝜃
= 𝜃∗(1 − 𝜃)3(𝜃∗𝑒)2, 

replacing 𝜃 with (1.30) ultimately yields 

 

𝜃∗ = 𝜃∗(1 − 𝜃) 

and therefore 𝜃 = 0, 𝜃∗𝜖[0,1]. 

 

1.8 Empirical Illustration 
This section illustrates the application of the model described above. Specifically, 

we analyze the trade data of Georgia and Turkey. Because of the free trade 

agreement, we have 𝜃 = 1  and 𝜃∗ = 1 . The data is taken from the National 

Statistics Office of Georgia1. In order to observe the quantities of products along 

with their prices, we extract HS-4 and HS-62 classifications which contain products 

imported and exported filling a significant portion of total trade. In addition, since 

the traded products are measured in US dollars, we convert those amounts into 

national currencies at an exchange rate for 3.01.2020. In particular, we take 

USD/GEL3 = 2.8661, USD/TRY4=5.9705. USD/TRY exchange rate is taken as an 

average of that day’s bid and ask values. Once these quantities are in place, we can 

obtain prices of per units of products in national currency. 

 

1. Source of Data: www.ex-trade.geostat.ge 

2. HS-4, HS-6 classification of products contain quality measurable products 

3. www.nbg.gov.ge 

4. www.tcmb.gov.tr 

http://www.ex-trade.geostat.ge/
http://www.nbg.gov.ge/
http://www.tcmb/
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Product 

Code 

p 𝑑∗ pUSD 𝑝𝑑∗ 𝑝𝑑∗1{𝜃∗𝑝∗𝑥>𝑝} 

0208 0.5732 22.5 4.5 12.8975 0 

0302 1.1575 1225.7 495 1418.72 1418.72 

0601 8.4333 13.9 40.9 117.2235 117.22 

0602 0.5236 31.2 5.7 16.3368 16.34 

0703 3.8460 23.4 31.4 89.9955 90.00 

0703 1.6507 709.1 408.4 1170.52 1170.52 

0713 3.4269 4.6 5.5 15.7636 15.76 

0802 17.4832 22 134.2 384.63 384.63 

0802 16.4890 24.3 139.8 400.68 400.68 

0810 1.4032 158.3 77.5 222.12 222.12 

0713 8.1574 6.5 18.5 53.02 53.02 

0901 28.2789 1.5 14.8 42.42 42.42 

0902 7.1656 434.2 1085.4 3110.87 0 

1106 0.5720 94.2 18.8 53.88 53.88 

1209 0.4379 7.2 1.1 3.15 3.15 

1211 6.1839 596.4 1286.8 3688.10 3688.10 

1401 0.2166 22.5 1.7 4.8724 0 

1502 3.5314 16.8 20.7 59.33 0 

1504 4.6143 2702.5 4350.9 12470.11 12470.11 

1515 2.5814 382.6 344.6 987.66 987.66 

1516 9.7447 0.5 1.7 4.87 4.87 

1522 1.0058 49.3 17.3 49.59 0 

1806 6.4691 59.9 135.2 387.50 387.50 

2005 0.0000 0 0 0 0 

2007 0.0000 0 0 0 0 

2103 0.0000 0 0 0 0 

2106 59.4716 8.3 8.3 23.79 0 
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2201 0.8571 73 73 209.23 209.23 

2204 8.4297 20 20 57.32 0 

2204 7.7026 30.1 30.1 86.27 0 

Table 1.1 Exported products from Georgia to Turkey 

The first column of Table 1.1 contains the unique codes of products. The second 

column 𝑝 is the 𝐺𝐸𝐿  value of 𝑝𝑈𝑆𝐷  column values which are the prices of the 

exported products measured in 𝑈𝑆𝐷 . The third column 𝑑∗  is the quantity of 

exported products. The fifth column 𝑝𝑑∗ is the 𝐺𝐸𝐿 value of exported product and 

the last one contains the same value filtered by the given indicator. Similarly, Table 

1.2 indicates the imported data in Georgia from Turkey. Columns 𝑑 and 𝑝∗𝑈𝑆𝐷 

contain the imported amounts of products and their total values measured in 𝑈𝑆𝐷. 

Once converted into 𝑇𝑅𝑌, we have the second column named 𝑝∗ . Amounts of 

products exported from Turkey to Georgia measured in 𝑇𝑅𝑌 is given by the column 

𝑝∗𝑑  and the same amount given the indicator function is in the column 

𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗}. 

An important note to take into account is that the Tables 1.1 and 1.2 represent the 

extract from the original data. The full data is contained in the accompanying 

spreadsheet file. Here we have several assumptions. Firstly, the random variables 

𝑑𝑘, 𝑝𝑘, 𝑑𝑘
∗ , 𝑝𝑘

∗  are assumed to be realized in year 2019 data. So we take the values of 

those random variables as defined on the extended probability space and compute 

the desired quantities accordingly. Since 𝜃 = 1  and 𝜃∗ = 1 , the only relevant 

equation from the system (1.13), (1.14), (1.15) is (1.13). However, as shown later, 

the quantities of 𝐷′ (
𝑒̂

𝜃̂
) = −0.93 and 𝐷∗(𝜃∗𝑒̂) = 0.11. 

In addition, because of the individual product prices and quantities grouped within 

the classified data, individual product prices and quantities are found by averaging 

the price for the quantity given. That provides an approximation to individual 

product prices. Similarly, the quantities contain the total quantities for all products 

within a given category. So, the quantities cannot be approximated to individual 
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product quantities. However, since we are interested in the currency flow between 

the two countries, we approximate the amount of currency exchanged by taking 

the product category as a single product and applying its observed quantity along 

with the average price. 

Product 

Code 

𝑝∗ d 𝑝∗𝑈𝑆𝐷 𝑝∗𝑑 𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗} 

4010 25.3656 135.6 576.1 3439.58 3439.58 

4011 44.2944 610.6 4530 27046.14 0 

4011 21.7291 2573 9364.3 55909.08 0 

4012 14.2939 88.3 211.4 1262.15 0 

4013 37.8894 2.6 16.5 98.51 0 

4014 77.6159 1.6 20.8 124.19 0 

4015 0 0 0 0 0 

4015 31.5858 83 439.1 2621.63 0 

4016 298.5225 0.4 20 119.41 0 

4016 9.2271 1.1 1.7 10.15 10.1498 

4016 16.5688 1222.1 3391.5 20248.78 20248.78 

4017 15.6898 8.6 22.6 134.93 134.9322 

4104 0 0 1.1 0 0 

4106 126.8721 0.8 17 101.50 0 

4107 48.0541 133.6 1075.3 6420.02 6420.025 

4112 182.0987 0.2 6.1 36.42 0 

4113 76.2891 6.3 80.5 480.62 0 

4114 41.7932 0.2 1.4 8.36 8.3586 

4115 44.7784 1.8 13.5 80.60 80.6011 

4201 32.8385 0.2 1.1 6.57 6.5675 

4201 55.7242 0.3 2.8 16.72 16.7173 

4202 194.0396 0.2 6.5 38.81 0 

Table 1.2: Imported products from Turkey to Georgia 
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In order to obtain the functions 𝐷(𝑥) and 𝐷∗(𝑥), we construct the exponential and 

logarithmic regressions respectively. The following table illustrates the currency 

demand functions for varying values of the exchange rate. 

𝑥 0 0.2 0.4 0.6 0.8 1 

𝐷(𝑥) 1 0.6442 0.5017 0.3046 0.2416 0.1965 

𝐷∗(𝑥) 0 0.1593 0.3575 0.5789 0.6097 0.6143 

Table 1.3: Currency Demand 

Corresponding regression plots are given in Figures 1.15 and 1.16. 

 

Figure 1.15: Exponential Regression for 𝐷(𝑥) 
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Figure 1.16: Logarithmic Regression for 𝐷∗(𝑥) 

From the definition of (1.1), (1.2), we compute 𝐶𝑁 and 𝐶𝑁
∗  and from (1.3) we have 

the following table. 

𝐶𝑁 𝐶𝑁
∗  𝐸(𝑝𝑑∗1{𝜃∗𝑝∗𝑥>𝑝}) 𝐸(𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗}) 𝑒 𝐷(

𝑒

𝜃
) 𝐷∗(𝑒𝜃∗) 

3861 1351 935.07 310.95 2.0339 0.37 0.76 

Table 1.4: Components of the system (1.13), (1.14), (1.15) 

 

Since we have a free trade agreement implying 𝜃 = 1 and 𝜃∗ = 1, we only have 

to solve (1.13) from the system of equations and obtain an optimal exchange rate. 

The solution to this equation yields  𝑒̂ = 2.0339 while the cross rate computed is 

𝐺𝐸𝐿/𝑇𝑅𝑌 = 2.0831. 
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Chapter 2 Gibbons Model 

2.1. Description of the Model 

In this chapter we describe one additional model proposed by R. Gibbons [12]. The 

primary difference between this model and the one developed before is that, this 

model defines the gain function based on completely different parameters. The 

approach to find the Nash Equilibrium point is identical. 

R. Gibbons considered a model in which the economic welfare of a nation is 

determined by consumers’ surplus enjoyed by the consumers within a given 

country, profit made by the local firms from selling goods on the domestic and 

foreign markets and the tariff revenue collected by the government from foreign 

imports. Two nations enter into an unrestricted bilateral trade. Competitive game 

between the nations is based on the sequence of decisions made by the firms and 

governments. Initially, the governments impose tariffs on imported products and 

the firms in both countries respond by deciding on the profit maximizing quantities 

of products for the home consumption and exports. The governments’ aim to 

maximize economic welfare results in a prisoner’s dilemma type of non-

cooperative game. 

According to the model, total production within the domestic and foreign markets 

are given by  

𝑄 = ℎ + 𝑓∗, 𝑄∗ = ℎ∗ + 𝑓 

respectively, where ℎ  and ℎ∗  are the production for the domestic consumption 

while 𝑓 and 𝑓∗ are the exported production for the domestic and foreign firms. Let 

us assume the market clearing prices for the production are given by  

𝑃 = 𝑎 − 𝑄, 𝑃∗ = 𝑎 − 𝑄∗, 

where 𝑎 is a positive constant satisfying 𝑎 > 𝑄 and 𝑎 > 𝑄∗. Given 𝑡 and 𝑡∗ are the 

tariffs imposed on imported production for the domestic and foreign countries, 

profits for the firms are defined respectively as 



67 
 

𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = (𝑎 − ℎ − 𝑓∗)ℎ + (𝑎 − ℎ∗ − 𝑓)𝑓 − 𝑡∗𝑓, 

𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = (𝑎 − ℎ∗ − 𝑓)ℎ + (𝑎 − ℎ − 𝑓∗)𝑓 − 𝑡𝑓∗ 

(2.1) 

Having defined these profits, the welfare of nations is determined as follows 

𝑊(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) =
1

2
𝑄2 + 𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) + 𝑡𝑓∗ 

𝑊∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) =
1

2
𝑄∗2 + 𝜋∗(𝑡. 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) + 𝑡∗𝑓 

(2.2) 

So here the nations are facing a dilemma to set an optimal tariff on imported 

commodities and take into consideration the optimal response from the 

competitor. 

 

2.2 Game Without Exchange Rate 

In this section we aim to solve the tariff optimization problem in order to maximize 

the welfare functions. Here the nations not only have to optimize the tariffs giving 

maximum welfare, but also to optimize the quantities of commodities produced for 

the domestic and foreign markets. 

For a given set of tariffs 𝑡, 𝑡∗, the Nash equilibrium point for the firms is found by 

solving the system of equations 

𝜕

𝜕ℎ
𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = 0, 

𝜕

𝜕ℎ
𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = 0, 

𝜕

𝜕𝑓
𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = 0, 

𝜕

𝜕𝑓∗
𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = 0, 

(2.3) 

which yields (see Appendix D) 

  

ℎ̂ =
𝑎 + 𝑡

3
, 𝑓 =

𝑎 − 2𝑡∗

3
, ℎ̂∗ =

𝑎 + 𝑡∗

3
, 𝑓∗ =

𝑎 − 2𝑡

3
 

(2.4) 

So, depending on the tariffs imposed by the governments, firms produce goods 

according to (2.4). The governments themselves select the tariffs to be imposed on 
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imports by maximizing their economic welfare functions. Having defined 

ℎ, 𝑓, ℎ∗, 𝑓∗ in terms of 𝑡 and 𝑡∗, (2.2) can be redefined as the functions of tariffs 

𝑊̂(𝑡, 𝑡∗) = 𝑊 (𝑡, 𝑡∗,
𝑎 + 𝑡

3
,
𝑎 − 2𝑡

3
,
𝑎 + 𝑡∗

3
,
𝑎 − 2𝑡

3
), 

𝑊̂∗(𝑡, 𝑡∗) = 𝑊 (𝑡, 𝑡∗,
𝑎 + 𝑡

3
,
𝑎 − 2𝑡

3
,
𝑎 + 𝑡∗

3
,
𝑎 − 2𝑡

3
). 

(2.5) 

The Nash equilibrium point for the game is obtained from solving the system 

𝜕

𝜕𝑡
(𝑡, 𝑡∗) = 0,

𝜕

𝜕𝑡∗
𝑊∗(𝑡, 𝑡∗) = 0 

(2.6) 

which gives (𝑡̂, 𝑡̂∗) = (
𝑎

3
,
𝑎

3
). (See Appendix D) So in case of imposing tariffs, total 

production for each market are 

𝑄̂ = ℎ̂ + 𝑓∗ =
2𝑎 − 𝑡̂

3
, 

𝑄̂∗ = ℎ̂∗ + 𝑓 =
2𝑎 − 𝑡̂∗

3
 

compared to 

𝑄̂ =
2𝑎

3
, 𝑄̂∗ =

2𝑎

3
 

in case of zero tariffs. Since the non-cooperative solution is not Pareto-optimal, the 

tariff game is a prisoner’s dilemma type of problem. Here we obtain the similar 

result as we have in Schwartz’s model. Free trade policy is beneficial for both 

parties. It is possible to draw a parallel to the results obtained in the asymmetric 

case of the previous model. When the parameters in the model are identical, 

neither nation has the dominant power over the competitor so they will have to 

impose equal tariffs. 

 

2.3 Game With Exchange Rate 

In this section we introduce a currency exchange rate, redefine the welfare and the 

firms profit functions of one nation taking the exchange rate into account, and find 

the Nash Equilibrium point for the welfare functions. We define the currency 

exchange rate as it is done in the original model. Within Gibbon’s model, not only 

the tariffs to be imposed on imported commodities are optimized along with the 
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exchange rate, but the quantities to be produced as well. Here the currency 

exchange rate is not directly a function of tariffs, but it is a function of exported 

commodities of domestic and foreign firms which themselves are the functions of 

tariffs. 

Let us introduce a currency exchange rate 𝑒 =
𝑝𝑓∗

𝑝∗𝑓
 where 𝑝 and 𝑝∗are the market 

clearing prices for products on domestic and foreign markets while 𝑓 and 𝑓∗ are 

the exported production for the domestic and foreign firms. Taking the currency 

exchange rate into account, profits made by firms in domestic and foreign markets 

are defined as follows 

𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = (𝑎 − ℎ − 𝑓∗)ℎ + (𝑎 − ℎ∗ − 𝑓)𝑓 − 𝑡∗𝑓, 

𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) = 𝑒(𝑎 − ℎ∗ − 𝑓)ℎ∗ + 𝑒(𝑎 − ℎ − 𝑓∗)𝑓∗ − 𝑒𝑡𝑓∗ 

(2.7) 

The economic welfare of countries are 

𝑊(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) =
1

2
𝑄2 + 𝜋(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) + 𝑡𝑓∗, 

𝑊∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) =
1

2
𝑒𝑄∗2 + 𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) + 𝑒𝑡𝑓∗. 

(2.8) 

Solving the system of equations (2.6) does not yield an explicit solution for 𝑡 and 

𝑡∗. They can only be solved by numerical methods. However, given the optimal 

values of 𝑡 and 𝑡∗, we can solve for  ℎ̂, 𝑓, ℎ̂∗, 𝑓∗ (See Appendix D) 

ℎ̂ =
𝑎 − 𝑓∗

2
, 

ℎ̂∗ =
𝑎 + 𝑡∗

3
, 

𝑓 =
𝑎 − 2𝑡∗

3
, 

𝑓∗ =
𝑎 − ℎ − 𝑡 + √(𝑎 − ℎ − 𝑡)2 + 3(𝑎 − ℎ∗ − 𝑓)ℎ∗

3
 

(2.9) 

These are the quantities of commodities produced by firms on both sides for 

domestic and foreign markets. Obviously differentiating the welfare functions with 

respect to tariffs would not give explicit solutions, so we do not provide the 

expressions here. 
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Unlike the previous model, Gibbons model does not explicitly account for foreign 

currency demand functions. Rather it focuses on firm specific details and expresses 

the welfare function for a given country as sums of firms’ profits, tax revenue made 

by the country and the consumers’ surplus within a given country. As a comparison 

with the previous model, it can be noted that once the objective functions are 

defined, maximization problems are identical in both models and both lead to an 

optimal Nash equilibrium. From the practical point of view, measuring all the 

quantities making up the welfare functions are quite feasible. Namely, the last two 

parameters, tax revenue and firms’ profits are trivially measured. Consumers’ 

surplus depends on the willingness of consumer’s to pay for particular products. So 

there must be estimated price demand functions compared with actual prices for 

particular products. However, according to the welfare functions defined above, 

the first parameter named as consumers’ surplus is not really a consumers’ surplus 

classically. The idea behind using quantities produced for the domestic and foreign 

markets as consumer’s surplus is that economic benefit is enjoyed by the nation 

producing and selling these goods. Accurate estimation of consumers’ surplus is a 

matter of scientific research. Related papers are listed in bibliography. 

Once the exchange rate is determined, we continue the thesis with portfolio 

optimization model which can be applied to any trading instrument with 

observable price dynamics including the currency exchange pairs. 

 

2.4 Empirical Illustration 

Since there is a zero tariffs imposed on imported products, instead of computing 

the optimal production level for domestic and foreign consumption, we estimate 

the exchange rate that is determined by the exported and imported products along 

with their market clearing prices. Here we assume that the market clearing prices 

are the ones observed by the National Statistics Office of Georgia. In particular, we 

have 𝑒 =
𝑝𝑓∗

𝑝∗𝑓
. We can translate this fraction into the terms of the previous model. 
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In particular, since the numerator and denominator represent the total amounts of 

exported and imported products, we take 𝑒 =
𝐸(𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗})

𝐸(𝑝𝑑∗1{𝜃∗𝑝∗𝑥>𝑝})
. 

Since only the observation on whole classification of products is available with total 

prices measured in 𝑈𝑆𝐷, here again as in previous example, we divide the total 

amount of exported and imported products measured in 𝑈𝑆𝐷 by the quantities and 

convert them into the national currencies of both countries at the given official 

exchange rate for 3.01.2020. 

Since we assume 𝑝𝑓∗ and 𝑝∗𝑓 are the quantities defined already on an extended 

probability space, we take the sum of the last column values in Tables 1.1 and 1.2 

which are 

𝐸(𝑝∗𝑑1{𝜃𝑝>𝑥𝑝∗}) =
1

𝑁
∑ 𝐸̅ (𝑝𝑘

∗𝑑𝑘1{𝜃𝑝𝑘>𝑥𝑝𝑘
∗ }) = 1423820,

𝑁

𝑘=1

 

𝐸(𝑝𝑑∗1{𝜃∗𝑝∗𝑥>𝑝}) =
1

𝑁
∑ 𝐸̅ (𝑝𝑘𝑑𝑘

∗1{𝜃∗𝑝𝑘
∗𝑥>𝑝𝑘}) = 773305.

𝑁

𝑘=1

 

Both of these quantities are given in thousands of national currency units. As a final 

note, since in the previous model, we have computed 𝐺𝐸𝐿/𝑇𝑅𝑌, here we reverse 

the exchange rate fraction and get 𝑒 = 1.8412. 

In order to define optimal quantities, we have to make several assumptions for 

reasonable approximation. Since the information about profits made by firms in a 

given country is not available (domestic and foreign countries), we assume that the 

profits made from selling products on a domestic market is some portion of exports. 

In particular, according to the National Statistics Office of Georgia, in 2019 total 

imports equate 9 120.4 million 𝑈𝑆𝐷 and exports to 3 766.4 million 𝑈𝑆𝐷1. At the 

same time, Turkish total exports as per 2018 was 168 023 390 million 𝑈𝑆𝐷 and 

imports reached 223 039 038 million 𝑈𝑆𝐷2 . As an approximation, we take 

Georgian exports made by firms being 2.4 times lower than imports. Similarly, we 

assume that Turkish firms export represent only ¾ of total imports. So, since we 

have 𝑓 = 334 870  and 𝑓∗ = 2 891 306 , we take ℎ = 139 529  and ℎ∗ =
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2 178 125. Before we have all we need in order to estimate the optimal quantities 

of commodities for domestic and foreign consumption from (2.9), the only quantity 

to be estimated remains the constant 𝑎. We already have observations on 𝑄 = ℎ +

𝑓∗  and 𝑄∗ = ℎ∗ + 𝑓 . Applying these quantities and the fact that 𝑃 = 𝑎 − 𝑄  and 

𝑃∗ = 𝑎 − 𝑄∗  , we approximate 𝑎  by computing it for both price equations and 

averaging it out such that it satisfies the inequalities 𝑎 > 𝑄 and 𝑎 > 𝑄∗. This way 

we obtain approximate 𝑎 = 3 051 782. Using the equations (2.4), we get the final 

quantities. If Georgia chooses to produce 1 million for the domestic production, 

i.e.  ℎ̂ = 1 000 000, then we obtain  ℎ̂∗ = 1 017 261, 𝑓 = 1 017 261 and  𝑓∗ =

2 953 279. Obviously, the quantities  ℎ̂∗ and  𝑓 coincide because of the absence of 

tariffs imposed by any country. At the same time, the result of 𝑓∗ being almost 

three times higher than 𝑓  is intuitive and is directly visible from the original 

export/import data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Source of Data: www.geostat.ge 

2.Source of Data: www.wits.worldbank.org 

http://www.geostat.ge/
http://www.wits.worldbank.org/
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Chapter 3 Portfolio Optimization 

3.1 Portfolio Wealth Process 

Consider a portfolio consisting of 𝑛  risky assets. [39] examines the multi-

dimensional Brownian motions for self-financing portfolios. To model the asset 

price movements, we take 𝑛 – dimensional Ito’s process which is a vector of asset 

prices 𝑆∗ = (𝑆1, . . . , 𝑆𝑛)𝑇  driven by 𝑛  – dimensional Brownian motion 𝐵 =

(𝐵1, . . . , 𝐵𝑛)𝑇, where 𝐵𝑖 = (𝐵𝑡
𝑖, 𝑡 ≥ 0) be the real valued Brownian motion which 

starts from 0 on (Ω, 𝐹, 𝑃): 

𝑑𝑆𝑡
𝑖 = 𝑆𝑡

𝑖(𝜇𝑖𝑑𝑡 + 𝜎𝑖𝑑𝐵𝑖) (3.1) 

where 𝜇𝑖 is the drift and 𝜎𝑖  is the row vector (𝜎𝑖1, . . . , 𝜎𝑖𝑛). For more convenient 

notation we can convert the differential equation into the following form: 

𝑑𝑆𝑡
𝑖 = 𝑆𝑡

𝑖(𝜇𝑖𝑑𝑡 + 𝜎𝑖1𝑑𝐵𝑖
1+ . . . + 𝜎𝑖𝑛𝑑𝐵𝑡

𝑛) (3.2) 

Define the portfolio wealth process 𝑉𝑡 corresponding to self-financing portfolio to 

follow the differential equation: 

𝑑𝑉𝑡 = 𝜃𝑡
1𝑑𝑆𝑡

1+ . . . +𝜃𝑡
𝑛𝑑𝑆𝑡

𝑛 (3.3) 

Since we only consider long portfolios, here 𝜃𝑡
𝑗
 denotes the number of 𝑗𝑡ℎ  asset 

purchased at time 𝑡 and it is a finite variance process. To solve this process, we 

extend the differential equation and introduce some notations. Let 𝜋𝑡
𝑖 = 𝜃𝑡

𝑖𝑆𝑡
𝑖 be 

the cash position of 𝑖𝑡ℎ  asset and let 𝑞𝑡
𝑖 =

𝜋𝑡
𝑖

𝑉𝑡
 be the weight of 𝑖𝑡ℎ  asset within a 

portfolio at time 𝑡. Having defined these quantities, we can proceed to solve the 

portfolio wealth process as follows: 

𝑑𝑉𝑡 = 𝜃𝑡
1𝑆𝑡

1(𝜇1𝑑𝑡 + 𝜎11𝑑𝐵𝑡
1 + 𝜎12𝑑𝐵𝑡

2+ . . . +𝜎1𝑛𝑑𝐵𝑡
𝑛)

+ 𝜃𝑡
2𝑆𝑡

2(𝜇2𝑑𝑡 + 𝜎21𝑑𝐵𝑡
1 + 𝜎22𝑑𝐵𝑡

2+ . . . +𝜎2𝑛𝑑𝐵𝑡
𝑛) + ⋯

+ 𝜃𝑡
𝑛𝑆𝑡

𝑛(𝜇𝑛𝑑𝑡 + 𝜎𝑛1𝑑𝐵𝑡
1 + 𝜎𝑛2𝑑𝐵𝑡

2+ . . . +𝜎𝑛𝑛𝑑𝐵𝑡
𝑛). 

(3.4) 

Multiplying the terms, factoring out the like terms and converting the equation 

into 𝜋𝑡
𝑖  terms yields: 



74 
 

𝑑𝑉𝑡 = (𝜋𝑡
1𝜇1 + 𝜋𝑡

2𝜇2+ . . . +𝜋𝑡
𝑛𝜇𝑛)𝑑𝑡

+ (𝜋𝑡
1𝜎11 + 𝜋𝑡

2𝜎21+ . . . +𝜋𝑡
𝑛𝜎𝑛1)𝑑𝐵𝑡

1

+ (𝜋𝑡
1𝜎12 + 𝜋𝑡

2𝜎22+ . . . +𝜋𝑡
𝑛𝜎𝑛2)𝑑𝐵𝑡

2+ . . . +(𝜋𝑡
1𝜎1𝑛

+ 𝜋𝑡
2𝜎2𝑛+ . . . +𝜋𝑡

𝑛𝜎𝑛𝑛)𝑑𝐵𝑡
𝑛 

(3.5) 

At this point we have arrived to an equation defined in terms of dollar positions in 

each asset within a portfolio. However, since our ultimate goal is to optimize the 

asset weights, we need to convert this equation into the terms of 𝑞𝑡
𝑗
. This is 

achieved by multiplying and diving the right side of the equation by 𝑉𝑡 at the same 

time. So, the result is an equation translated into weight terms: 

𝑑𝑉𝑡 = 𝑉𝑡[(𝑞𝑡
1𝜇1 + 𝑞𝑡

2𝜇2+ . . . + 𝑞𝑡
𝑛𝜇𝑛)𝑑𝑡

+ (𝑞𝑡
1𝜎11 + 𝑞𝑡

2𝜎21+ . . . + 𝑞𝑡
𝑛𝜎𝑛1)𝑑𝐵𝑡

1

+ (𝑞𝑡
1𝜎12 + 𝑞𝑡

2𝜎22+ . . . +𝑞𝑡
𝑛𝜎𝑛2)𝑑𝐵𝑡

2+ . . . +(𝑞𝑡
1𝜎1𝑛

+ 𝑞𝑡
2𝜎2𝑛+ . . . +𝑞𝑡

𝑛𝜎𝑛𝑛)𝑑𝐵𝑡
𝑛] 

(3.6) 

Since the optimal weights imply an investor should hold these weights constant 

during an investment horizon, it means an investor should constantly re-balance 

the portfolio in order to maintain the once selected weights. So, assuming that 

weights are held constant at any point in time t, we can correspondingly update 

the equation (3.6) into the form: 

𝑑𝑉𝑡 = 𝑉𝑡[(𝑞1𝜇
1 + 𝑞2𝜇

2+ . . . +𝑞𝑛𝜇𝑛)𝑑𝑡

+ (𝑞1𝜎
11 + 𝑞2𝜎

21+ . . . +𝑞𝑛𝜎𝑛1)𝑑𝐵𝑡
1

+ (𝑞1𝜎
12 + 𝑞2𝜎

22+ . . . +𝑞𝑛𝜎𝑛2)𝑑𝐵𝑡
2+ . . . +(𝑞1𝜎

1𝑛

+ 𝑞2𝜎
2𝑛+. . . +𝑞𝑛𝜎𝑛𝑛)𝑑𝐵𝑡

𝑛] 

(3.7) 

In this equation, all sums within the parenthesis are constants, so we can shorten 

the notation by introducing the new notations. Let 

𝜇̅ = 𝑞1𝜇
1 + 𝑞2𝜇

2+ . . . +𝑞𝑛𝜇𝑛 (3.8) 

and 

𝜎𝑗 = 𝑞1𝜎
1𝑗 + 𝑞2𝜎

2𝑗+ . . . +𝑞𝑛𝜎𝑛𝑗  (3.9) 

for all 𝑗 = 1, . . . , 𝑛. Equation (3.7) now becomes 

𝑑𝑉𝑡 = 𝑉𝑡[𝜇̅𝑑𝑡 + 𝜎1𝑑𝐵𝑡
1 + 𝜎2𝑑𝐵𝑡

2+ . . . +𝜎𝑛𝑑𝐵𝑡
𝑛]. (3.10) 
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Solution to this differential equation by [39] is: 

𝑉𝑡 = 𝑉0𝒆𝒙𝒑 ([𝜇̅ −
1

2
(𝜎1

2 + 𝜎2
2+. . . +𝜎𝑛

2)] 𝑡 + 𝜎1𝐵𝑡
1 + 𝜎2𝐵𝑡

2+ . . . +𝜎𝑛𝐵𝑡
𝑛) 

(3.11) 

Power can be simplified once more if we let   𝜇 = 𝜇̅ −
1

2
(𝜎̅1

2 + 𝜎2
2+ . . . +𝜎𝑛

2) and 

represent the sum of Brownian motions as a single Brownian motion by adjusting 

the coefficients accordingly. So 

𝜎1𝐵𝑡
1 + 𝜎2𝐵𝑡

2+ . . . +𝜎𝑛𝐵𝑡
𝑛 = 𝜎̃𝐵̃𝑡 

where 

𝜎̃ = √𝜎1
2 + 𝜎2

2+ . . . +𝜎𝑛
2. 

(3.12) 

Finally, the portfolio wealth process is 

𝑉𝑡 = 𝑉0𝒆𝒙𝒑 (𝜇̃𝑡 + 𝜎̃ 𝐵𝑡̃) (3.13) 

At this point, it is clear that the power 

𝑅𝑡 = 𝜇𝑡 + 𝜇 𝐵𝑡̃ (3.14) 

so called return of the portfolio is a Brownian motion with drift and diffusion 

coefficients. Since it represents the rate at which the portfolio wealth is changing, 

𝑅(0) = 0. 

 

3.2 Minimum Return Level 
Given the portfolio wealth process by (3.13), it is clear that minimum portfolio 

wealth by high confidence level is reached when (3.14) obtains the lowest value by 

the same confidence level. In order to measure it, we need to know the probability 

distribution function of portfolio returns. Once we have estimated the probability 

distribution function 𝐹 for portfolio returns, we can extract the quantile 𝐹−1(𝛼), 

where alpha is a significance level, usually taken to be 1% or 5%. The key 

improvement brought by the First Passage Time is that, if the estimated portfolio 

return probability density function does not turn out to be symmetric while the 

volatility is significantly large, then the portfolios’ expected bounded FPTs will 

often differ a lot. Graphically, if we denote MRL as 𝑚 = 𝐹−1(𝛼), on a normal 

distribution density function, it looks as follows 
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Figure 3.1: 𝑚 level taken from the Normal distribution density function 

 

In the figure above, 𝑚 = 𝐹−1(𝛼, 𝜇, 𝜎), −0.1428 = 𝐹−1(0.05, 0.4, 0.33). From now 

on we will use 𝑚 as the lowest level for the returns process (3.14) to reach in order 

to obtain the lowest portfolio wealth. 

Here we compute the MRL assuming that the probability distribution density 

function is known. However it has to be estimated in real world scenario. 

 

3.3 Expectation of Bounded First Passage Time 
Next step is to define the new dimension – expectation of bounded first passage 

time. For a Brownian motion with drift 

𝑋𝑡 = 𝜇𝑡 + 𝑊𝑡 (3.15) 

if we denote the minimum value of this process till time t as: 

𝑀𝑡
𝑥 = inf

𝑠≤𝑡
𝑋𝑠 (3.16) 
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and let 𝜏𝑦 = min{𝑡 ≥ 0; 𝑋𝑡 ≤ 𝑦} be the first passage time to the level 𝑦, then it is 

shown from [6] that the probability distribution function for 𝜏𝑦 is given by 

𝑃(𝑀𝑡
𝑥 ≤ 𝑦) = 𝑃(𝜏𝑦 ≤ 𝑡)𝑁 (

𝑦 − 𝜇𝑡

√𝑡
) + exp(2𝜇𝑦)𝑁(

𝑦 + 𝜇𝑡

√𝑡
) (3.17) 

where 𝑁(𝑥) is the cumulative standard normal probability distribution function. 

We are looking for the first passage time for the returns process given by (3.14) 

towards the level 𝑚 (which we called MRL). 𝑚 is usually a negative quantity. 

 

Figure 3.2: Brownian motion path and the 𝑚 level 

In Figure 3.2, MRL: 𝑚 = −5% , return process: 𝑅𝑡 = 0.35𝑡 + 0.25 𝐵̃𝑡 , positive 

drift: 𝜇 = 0.35, diffusion: 𝜎 = 0.25. 

We know that 𝑅(0) = 0. In order for (3.14) to reach the 𝑚 level, the following 

equation must be satisfied 

𝑚

𝜎̃
=

𝜇

𝜎̃
𝑡 + 𝐵̃𝑡 

(3.18) 

So, the first passage time 𝜏𝑚 = min {𝑡 ≥ 0; 𝑅𝑡 ≤ 𝑚}  has the probability 

distribution function 

𝑃(𝑅𝑡 ≤ 𝑚) = 𝑁 (
𝑚 − 𝜇𝑡

𝜎̃√𝑡
) + exp (

2𝜇𝑚

𝜎̃𝜎̃
)𝑁(

𝑚 + 𝜇𝑡

𝜎̃√𝑡
) 

(3.19) 

If we have a Brownian motion with drift and diffusion given by 

𝑑𝑋𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 (3.20) 
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and 𝜏 = min {𝑡 ≥ 0; 𝑋𝑡 ≤ 𝑦}, then it is shown in [40] that the probability density 

function of 𝜏𝑦 is given by 

𝑓𝜏𝑦
(𝑡) =

|𝑦 − 𝑋0|

2𝜋𝜎2𝑡3
𝑒𝑥𝑝 (

(𝜇𝑡 − 𝑦 + 𝑋0)
2

2𝜎2𝑡
 

(3.21) 

Correspondingly by [41] 

𝐸[𝜏𝑦 ∧ 𝑇] = ∫ 𝑡𝑓𝜏𝑦
(𝑡)

𝑇

0

𝑑𝑡 + 𝑇[1 − 𝑃(𝜏𝑦 ≤ 𝑇)] 
(3.22) 

Converting (3.21) into the terms of 𝑅 yields 

𝑓𝜏𝑚
(𝑡) −

|𝑚 − 𝑅(0)|

2𝜋𝜎̃2𝑡3
exp (−

(𝜇𝑡 − 𝑚 + +𝑅(0))
2

2 𝜎̃2𝑡
 

(3.23) 

thus 

𝐸[𝜏𝑚 ∧ 𝑇] = ∫ 𝑡𝑓𝜏𝑚
(𝑡)𝑑𝑡 + 𝑇[1 − 𝑃(𝜏𝑚 ≤ 𝑇)]

𝑇

0

 
(3.24) 

The reason we switch to the bounded first passage time is that since 𝑅(0) = 0 =

𝑚, from (3.14) it can be shown that for  𝜇 > 0, 𝐸(𝜏𝑚) = ∞. We always consider 

portfolio return process which has a positive drift, because we examine only long 

portfolios in this paper. 

 

3.4 Mean-MRL-FPT Framework 

After having defined the portfolio wealth process, and MRL and expectation of the 

bounded first passage time, we can construct the model of portfolio optimization. 

The goal is to find the maximum MRL and bounded First Passage Time for a given 

expected return for the investment end time 𝑇: 𝐸[𝑅𝑇] = 𝜇𝑇. 

𝐸[𝜏𝑚 ∧ 𝑇] 

𝐸[𝑅𝑇] 

𝑚 

(3.25) 

Varying the weights 𝑞1, 𝑞2, … , 𝑞𝑛 allocated in the assets gives us the set of different 

portfolios from which selecting the best combination of the above quantities yields 

the efficient surface 
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Figure 3.3: Surface of portfolios obtained by different weights allocated in the 

assets included 

On this surface, all risky portfolios are optimal in Mean-MRL-FPT sense since it is 

impossible to find a better combination of given quantities for each. 

As an important note, the model is particularly useful when the individual assets 

within a portfolio have large variance causing the portfolio variance to be large as 

well. This makes the portfolio returns likely to hit the minimum level before the 

investment horizon. So, in this case 𝐸[𝜏𝑚 ∧ 𝑇] < 𝑇 and it makes sense to compare 

such portfolios. Otherwise, if the individual volatilities are sufficiently low, then 

no matter what weights are allocated in each asset, the expected bounded first 

passage time almost always coincides to the investment horizon-𝑇. In this case, 

𝐸[𝜏𝑚 ∧ 𝑇] = 𝑇  for any set of weights allocated to different assets and the first 

passage time can be dropped altogether and the decision is to be made solely on 

two dimensions – Mean and Minimum Return Level. In such a situation, we would 

obtain the two-dimensional curve that looks much like the efficient frontier 
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Figure 3.4: Efficient frontier constructed by 𝐸[𝑅𝑇] and 𝑚 = 𝐹−1(𝛼) for different 

portfolios 

𝑚 0.042 0.045 0.0448 0.0453 0.0463 0.0478 0.0489 

𝐸[𝑅𝑇] 0.1145 0.1149 0.1152 0.1152 0.1152 0.1154 0.1156 

Table 3.1: Efficient frontier 

 

3.5 Example of Two-Asset Portfolio 

Here we apply the theory described above for a portfolio consisting of two assets. 

We take two Exchange Traded Funds (ETFs) from NASDAQ and observe their spot 

prices on a daily bases for four months. Table E1 shows a historical data for 

Vanguard Total Stock Market ETF (VTI) and iShares 7-10 Year Treasury Bond ETF 

(EIF) with the daily returns computed. 

Considering the investment horizon of 𝑇 = 30 days, we compute  𝜇̅ and  𝜎𝑗 for 𝑗 =

1,2  from (3.8) and (3.9) for various combinations of weights. In addition we 

compute   𝜎̃ from (3.12) and 𝑃(𝜏𝑚 ≤ 𝑇) from (3.17). This information is given in 

Table E2. 

Since the portfolio wealth process obtains the minimum level by a given 

confidence level wherever (3.14) drops to its minimum 𝑚 by the same confidence 

level, we observe the rate instead of the portfolio value itself. Ultimately the three 

dimensions are generated in Table E3. This table corresponds to the efficient 

surface similar to Figure 3.4. See Appendix E for the tables. 
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3.6 Example of Four-Asset Portfolio 

This section covers the portfolio consisting of multiple assets. In particular, we 

consider a portfolio consisting of four common stocks – Travelzoo (TZOO), AXT 

Inc. (AXTI), Universal Forest Products (UFPI), Advanced Micro Devices (AMD). 

The investment horizon is taken to be 10 years. Unlike the previous example, here 

we take the annual spot prices. Table E4 illustrates the annual spot prices from 2009 

to 2019 taken from NASDAQ. 

We compute  𝜇̅ and  𝜎𝑗 for 𝑗 = 1,2,3,4 from (3.8) and (3.9) for various combinations 

of weights. We also compute   𝜎̃ from (3.12). This information is given in Table E5. 

Ultimately the three dimensions are generated in Table E6. This table corresponds 

to the efficient surface similar to Figure 3.4. Since there are too many combinations 

of weights constructing different portfolios, Table E6 illustrates some combinations 

of weights of four assets. Detailed results are provided in the accompanying 

spreadsheet. 

If we consider a hypothetical scenario where the third dimension – the expected 

bounded first passage time equals the investment horizon, this dimension would 

be dropped and the entire model would be replaced by the two dimensional 

analogue as discussed above. Ultimately the result would again be the efficient 

frontier of risky assets with the expected returns and the minimum return levels 

measured for them. This case is illustrated in the following example. See Appendix 

E for the tables. 

 

3.7 Example of Three-Asset Portfolio 

This section covers the portfolio consisting of three assets whose expected bounded 

first passage times made up from different portfolios turn out to be quite different. 

So the portfolio returns are expected to hit the low barrier in different times before 

the investment horizon. In Particular, we consider a portfolio consisting of three 

common stocks – Apple Inc. (AAPL), JPMorgan Chase Co. (JPM) and Walmart Inc. 
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(WMT). The investment horizon is taken to be 30 months. Here we take the 

monthly spot prices again. Table E7 illustrates the monthly spot prices from April 

the 28th, 2017 to 1st of April, 2019, taken from NASDAQ. 

We compute  𝜇̅ and  𝜎 for 𝑗 = 1,2,3 from (3.8) and (3.9) for various combinations 

of weights. We also compute   𝜎̃ from (3.12). This information is given in Table E8. 

Ultimately the three dimensions are generated in Table E9. This table corresponds 

to the efficient surface similar to Figure 3.4. If we had done the portfolio 

optimization consisting of these three assets in mean-variance framework, the 

results would be as shown in Table E10 with the corresponding scatter plot in 

Figure 3.5. All tables for this example are illustrated in Appendix E. 

 

Figure 3.5: All Portfolios, Mean-Variane Framework 

 

3.8 Example of Multi-Asset Portfolio with Large FPTs 

This section covers the portfolio consisting of three assets whose expected bounded 

first passage times made up from different portfolios turn out to be very close to 

the investment horizon. So the portfolio returns are not expected to hit the low 

barrier throughout the investment period. In Particular, we consider a portfolio 

consisting of three common stocks – YUMA Energy Inc (YUMA), Immunic Inc. 
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(IMUX), Savara Inc (SVRA). The investment horizon is taken to be 30 days. Unlike 

the previous example, here we take the daily spot prices. Table E11 illustrates the 

daily spot prices from March the 25th, 2019 to 23rd of April, 2019 taken from 

NASDAQ. 

We compute  𝜇̅ and 𝜎𝑗 for 𝑗 = 1,2 from (3.8) and (3.9) for various combinations of 

weights. We also compute  𝜎̃  from (3.12). This information is summarized in Table 

E12. Ultimately the three dimensions are generated in Table E13. This table 

corresponds to the efficient surface similar to Figure 3.4. 

Since expected bounded first passage time coincides with the investment horizon 

for any portfolio made up of these assets. This means that we can ignore this 

dimension altogether. So instead of the three dimensional surface, here we draw 

the efficient frontier in two dimensions. In particular, in the last column of the 

Table E13, all values would be 30. In this case we obtain an efficient frontier 

illustrated in Figure 3.6. Figure 3.4 where MRL is taken as a risk measure instead 

of volatility is a preferable option though. Detailed results are provided in the 

accompanying spreadsheet. See Appendix E for the tables. 

 

Figure 3.6: Efficient Frontier, Mean-Variance Framework 
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Conclusion 

It can be concluded that the non-cooperative trade game results in a problem of 

optimizing tariffs on imported commodities. We derived system of equations and 

sufficient conditions for the Nash equilibrium point which gives the optimal triple 

– tariffs imposed by nations on imported commodities and the currency exchange 

rate. We illustrated that shapes of the demand functions determine the economic 

power one nation has over another. However, from the demand functions alone, it 

is impossible to predict which nation will have a greater optimal tariff to be 

imposed. It is assumed that the distributions of commodities exchanged and the 

prices for those commodities are known. The examples provided are intended to 

illustrate the typical cases of economically symmetric and asymmetric nations 

involved in non-cooperative bilateral trade game. Obviously, in real world 

scenario, the demand functions are not predetermined. Rather, they are derived 

from (1.1) and (1.2). Next we provided several pairs of the foreign currency demand 

functions where one nation dominates the other. 

Within the same context, the second chapter dealt with the Gibbon’s model where 

a similar problem is solved. Namely, economic welfare functions for the nations 

differ from those in the first model. Here we solved the economic welfare 

maximization problem with and without the concept of a currency exchange rate 

and obtained the optimal production volumes for each nation aimed for the 

domestic and foreign markets. 

The final part of the thesis explored the portfolio selection process by introducing 

the framework involving three dimensions. The basic idea was to extend the two-

dimensional framework by an additional one – the expected bounded first passage 

time. The usefulness of the approach is evident once the individual assets within a 

portfolio have large volatilities causing the returns to hit the minimum level before 

the investment horizon. The paper only concerned itself with optimizing risky 

portfolios. There can be numerous continuations to the problem. If an investor 

decides to allocate part of the investment amount into some risk-free assets, then 
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the optimal weights must be modified according to some criteria. In two-

dimensional Mean-Variance model, maximization of Sharpe ratio and building a 

Capital Allocation Line (CAL) is one possible development. Similarly, one may 

think of capital allocation plane as an analogue to the CAL in 3D. However, this 

model is restricted to risky portfolio optimization. Within this chapter, we provide 

an example where a portfolio consists of stocks and construct the efficient surface 

for that particular example. This example can easily be extended to portfolios of 

any assets including the currency exchange pairs. 
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Appendix A 

The following system of equations determine the tariffs each nation has to set in 

order to obtain the maximum gains from trade 

 

𝜕

𝜕𝜃
𝐺(𝑒, 𝜃, 𝜃∗) = 𝐺𝜃(𝑒, 𝜃, 𝜃∗) + 𝐺𝑒(𝑒, 𝜃, 𝜃∗)𝑒𝜃 = 0, 

(26) 

𝜕

𝜕𝜃
𝐺∗(𝑒, 𝜃, 𝜃∗) = 𝐺𝜃∗

∗ (𝑒, 𝜃, 𝜃∗) + 𝐺𝑒
∗(𝑒, 𝜃, 𝜃∗)𝑒𝜃 = 0 

(27) 

where the index denotes the partial derivative of a given function with respect to 

a given variable. 

If we define 𝑔(𝑒, 𝜃) =
𝑒

𝜃
 and 𝑔(𝑒, 𝜃) =

1

𝜃∗𝑒
, the individual components of (26) and 

(27) become 

 

𝐺𝜃(𝑒, 𝜃, 𝜃∗) =
𝜕

𝜕𝑔
[−∫ 𝑦𝐷′(𝑦)𝑑𝑦]

𝜕𝑔

𝜕𝜃
−

𝜕

𝜕𝜃
𝐷∗(𝜃∗𝑒) = 𝑔𝐷′(𝑔)𝑔′(𝜃)

∞

𝑔

=
𝑒

𝜃
𝐷′ (

𝑒

𝜃
) (−

𝑒

𝜃2
) = −

𝑒2

𝜃3
𝐷′(

𝑒

𝜃
), 

(28) 

𝐺𝑒(𝑒, 𝜃, 𝜃∗) =
𝜕

𝜕𝑔
[−∫ 𝑦𝐷′(𝑦)𝑑𝑦]

𝜕𝑔

𝜕𝑒
−

𝜕

𝜕𝑒
𝐷∗(𝜃∗𝑒)

∞

𝑔

= 𝑔𝐷′(𝑔)𝑔′(𝑒) − 𝜃∗𝐷∗′(𝜃∗𝑒) =
𝑒

𝜃2
𝐷′ (

𝑒

𝜃
) − 𝜃∗𝐷∗′(𝜃∗𝑒), 

(29) 

𝐺𝜃∗
∗ (𝑒, 𝜃, 𝜃∗) =

𝜕

𝜕𝑔
[∫

1

𝑦
𝐷∗′ (

1

𝑦
) 𝑑𝑦]

𝜕𝑔

𝜕𝜃∗
−

𝜕

𝜕𝜃∗
𝐷 (

𝑒

𝜃
)

∞

𝑔

= −𝜃∗𝑒𝐷∗′(𝜃∗𝑒) (−
1

𝜃∗2𝑒
) =

1

𝜃∗
𝐷∗′(𝜃∗𝑒), 

(30) 

𝐺𝑒
∗(𝑒, 𝜃, 𝜃∗) =

𝜕

𝜕𝑔
[∫

1

𝑦
𝐷∗′ (

1

𝑦
) 𝑑𝑦]

𝜕𝑔

𝜕𝑒
−

𝜕

𝜕𝑒
𝐷 (

𝑒

𝜃
)

∞

𝑔

= −𝜃∗𝑒𝐷∗′(𝜃∗𝑒) (−
1

𝜃∗𝑒2
) −

1

𝜃
𝐷′ (

𝑒

𝜃
)

=
1

𝑒
𝐷∗′(𝜃∗𝑒) −

1

𝜃
𝐷′ (

𝑒

𝜃
) , 

(31) 

𝑒𝜃 and 𝑒𝜃∗ can be found from (1.5) as described next. 

Let us define 
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𝐹(𝑒, 𝜃, 𝜃∗) = 𝑒𝐷 (
𝑒

𝜃
) − 𝐷∗(𝜃∗𝑒). (32) 

Differentiating (32) with respect to 𝜃 and 𝜃∗ separately and equating them to zero 

yields the system of equations 

 

𝐹𝜃(𝑒, 𝜃, 𝜃∗) + 𝐹𝑒(𝑒, 𝜃, 𝜃∗)𝑒𝜃 = 0, 

 

𝐹𝜃∗(𝑒, 𝜃, 𝜃∗) + 𝐹𝑒(𝑒, 𝜃, 𝜃∗)𝑒𝜃∗ = 0, 

from which solving for 𝑒𝜃 and 𝑒𝜃∗ gives 

 

𝑒𝜃 = −
𝐹𝜃(𝑒, 𝜃, 𝜃∗)

𝐹𝑒(𝑒, 𝜃, 𝜃∗)
=

𝑒2

𝜃2 𝐷′ (
𝑒
𝜃)

𝐷 (
𝑒
𝜃) +

𝑒
𝜃 𝐷′ (

𝑒
𝜃) − 𝜃∗𝐷∗′(𝜃∗𝑒)

, 

(33) 

𝑒𝜃∗ = −
𝐹𝜃∗(𝑒, 𝜃, 𝜃∗)

𝐹𝑒(𝑒, 𝜃, 𝜃∗)
=

𝑒𝐷∗′(𝜃∗𝑒)

𝐷 (
𝑒
𝜃) +

𝑒
𝜃 𝐷′ (

𝑒
𝜃) − 𝜃∗𝐷∗′(𝜃∗𝑒)

, 
(34) 

Putting these solutions into the system of equations (26), (27) yields the following results. 

From (26) we have 

 

𝜕

𝜕𝜃
𝐺(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗)

= −
𝑒2

𝜃3
𝐷′ (

𝑒

𝜃
)

+ [
𝑒

𝜃2
𝐷′ (

𝑒

𝜃
)

− 𝜃∗𝐷∗′(𝜃∗𝑒)] [

𝑒2

𝜃2 𝐷′ (
𝑒
𝜃)

𝐷 (
𝑒
𝜃) +

𝑒
𝜃 𝐷′ (

𝑒
𝜃) − 𝜃∗𝐷∗′(𝜃∗𝑒)

]

=

𝑒2

𝜃2 𝐷′ (
𝑒
𝜃)

𝐷 (
𝑒
𝜃) +

𝑒
𝜃 𝐷′ (

𝑒
𝜃) − 𝜃∗𝐷∗′(𝜃∗𝑒)

[
𝑒

𝜃2
𝐷′ (

𝑒

𝜃
)

− 𝜃∗𝐷∗′(𝜃∗𝑒) −
1

𝜃
[𝐷 (

𝑒

𝜃
) +

𝑒

𝜃
𝐷′ (

𝑒

𝜃
) − 𝜃∗𝐷∗′(𝜃∗𝑒)]]

=
𝑒𝜃

𝜃2
[𝑒𝐷′ (

𝑒

𝜃
) − 𝜃2𝜃∗𝐷∗′(𝜃∗𝑒) − 𝜃𝐷 (

𝑒

𝜃
) − 𝑒𝐷′ (

𝑒

𝜃
)

+ 𝜃𝜃∗𝐷∗′(𝜃∗𝑒)] =
𝑒𝜃

𝜃
[−𝐷 (

𝑒

𝜃
) + 𝜃∗(1 − 𝜃)𝐷∗′(𝜃∗𝑒)] = 0 

(35) 
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and from  (1.9) we have 

𝜕

𝜕𝜃∗
𝐺∗(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗)

=
1

𝜃∗
𝐷∗′(𝜃∗𝑒)

+ [
1

𝑒
𝐷∗′(𝜃∗𝑒)

−
1

𝜃
𝐷′ (

𝑒

𝜃
)] [

𝑒𝐷∗′(𝜃∗𝑒)

𝐷 (
𝑒
𝜃
) +

𝑒
𝜃

𝐷′ (
𝑒
𝜃
) − 𝜃∗𝐷∗′(𝜃∗𝑒)

]

=
𝑒𝐷∗′(𝜃∗𝑒)

𝐷 (
𝑒
𝜃) +

𝑒
𝜃 𝐷′ (

𝑒
𝜃) − 𝜃∗𝐷∗′(𝜃∗𝑒)

[
1

𝑒𝜃∗
[𝐷 (

𝑒

𝜃
) +

𝑒

𝜃
𝐷′ (

𝑒

𝜃
)

− 𝜃∗𝐷∗′(𝜃∗𝑒)] + [
1

𝑒
𝐷∗′(𝜃∗𝑒) −

1

𝜃
𝐷′ (

𝑒

𝜃
)]]

=
𝑒𝜃∗

𝑒
[
1

𝜃∗
𝐷 (

𝑒

𝜃
) +

𝑒

𝜃∗𝜃
𝐷′ (

𝑒

𝜃
) − 𝐷∗′(𝜃∗𝑒) + 𝐷∗′(𝜃∗𝑒)

−
𝑒

𝜃
𝐷′ (

𝑒

𝜃
)] =

𝑒𝜃∗

𝜃∗𝑒
[𝐷 (

𝑒

𝜃
) −

𝑒

𝜃
(𝜃∗ − 1)𝐷′ (

𝑒

𝜃
)] = 0. 

(36) 

Hence 

𝐷 (
𝑒

𝜃
) = 𝜃∗(1 − 𝜃)𝐷∗′(𝜃∗𝑒), 

𝐷 (
𝑒

𝜃
) =

𝑒

𝜃
(𝜃∗ − 1)𝐷′ (

𝑒

𝜃
). 

For the second derivatives, we have 

𝜕2

𝜕𝜃2
𝐺(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗)

=
𝜃𝑒𝜃𝜃 − 𝑒𝜃

𝜃2
[𝜃∗(1 − 𝜃)𝐷∗′(𝜃∗𝑒) − 𝐷 (

𝑒

𝜃
)]

+
𝑒𝜃

𝜃
[𝜃∗2(1 − 𝜃)𝑒𝜃𝐷∗′′(𝜃∗𝑒) − 𝜃∗𝐷∗′(𝜃∗𝑒)

−
𝑒𝜃𝜃 − 𝑒

𝜃2
𝐷′ (

𝑒

𝜃
)], 

 

 

 

(37) 
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𝜕2

𝜕𝜃∗2 𝐺∗(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗)

=
𝑒𝜃∗𝑒𝜃∗𝜃∗ − 𝜃∗𝑒𝜃∗

2 − 𝑒𝑒𝜃∗

(𝑒𝜃∗)2
[𝐷 (

𝑒

𝜃
) −

𝑒

𝜃
(𝜃∗ − 1)𝐷′ (

𝑒

𝜃
)]

+
𝑒𝜃∗

𝑒𝜃∗
[
𝑒𝜃∗

𝜃
𝐷′ (

𝑒

𝜃
) −

(1 − 𝜃∗)𝑒𝜃∗ − 𝑒

𝜃
𝐷′ (

𝑒

𝜃
)

−
(1 − 𝜃∗)𝑒𝜃∗𝑒

𝜃2
𝐷′′ (

𝑒

𝜃
)]

=
𝑒𝜃∗𝑒𝜃∗𝜃∗ − 𝜃∗𝑒𝜃∗

2 − 𝑒𝑒𝜃∗

(𝑒𝜃∗)2
[𝐷 (

𝑒

𝜃
) −

𝑒

𝜃
(𝜃∗ − 1)𝐷′ (

𝑒

𝜃
)]

+
𝑒𝜃∗

𝑒𝜃∗
[
𝜃∗𝑒𝜃∗ + 𝑒

𝜃
𝐷′ (

𝑒

𝜃
) −

(1 − 𝜃∗)𝑒𝜃∗𝑒

𝜃2
𝐷′′ (

𝑒

𝜃
)]. 

(38) 

Assuming that the system (1.10), (1.11) has a solution and 𝑥𝐷(𝑥) → 0 as 𝑥 → ∞, 

we get 

𝑥𝐷 (
𝑥

𝜃
) − 𝐷∗(𝜃∗𝑥) > 0, 𝑖𝑓 𝑥 < 𝑒, 

𝑥𝐷 (
𝑥

𝜃
) − 𝐷∗(𝜃∗𝑥) = 0, 𝑖𝑓 𝑥 = 𝑒, 

𝑥𝐷 (
𝑥

𝜃
) − 𝐷∗(𝜃∗𝑥) < 0, 𝑖𝑓 𝑥 > 𝑒. 

Then 

𝑑

𝑑𝑥
|𝑥=𝑒 [𝑥𝐷 (

𝑥

𝜃
) − 𝐷∗(𝜃∗𝑥)] = 𝐷 (

𝑒

𝜃
) +

𝑒

𝜃
𝐷′ (

𝑒

𝜃
) − 𝜃∗𝐷∗′(𝜃∗𝑒) < 0, 

and from (33), (34) follows that 𝑒𝜃 > 0, 𝑒𝜃∗ < 0. Since the first summands of (37) 

and (38) are zero, the conditions 

𝜕2

𝜕𝜃2
𝐺(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗) < 0,

𝜕2

𝜕𝜃∗2 𝐺∗(𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗) < 0 

provide (1.16), (1.17). 
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Appendix B 

 

Differentiating the given demand functions 

𝐷(𝑥) = 𝒆𝒙𝒑(−𝛿𝑥),   𝐷∗(𝑥) = 𝛼𝑥𝒆𝒙𝒑(𝛽𝑥) (39) 

gives 

𝐷′(𝑥) = −𝛿𝒆𝒙𝒑(−𝛿𝑥),   𝐷∗′(𝑥) = (𝛼𝛽𝑥 + 𝛼) 𝒆𝒙𝒑(𝛽𝑥), (40) 

𝐷′(𝑥) = −𝛿2𝒆𝒙𝒑(−𝛿𝑥),   𝐷∗′′(𝑥) = (𝛼𝛽2𝑥 + 2𝛼𝛽) 𝒆𝒙𝒑(βx). (41) 

The equilibrium exchange rate is found from (1.5) as follows 

𝑒𝒆𝒙𝒑(−𝛿
𝑒

𝜃
) = 𝛼𝜃∗𝑒𝒆𝒙𝒑(𝛽𝜃∗𝑒), 

−𝛿
𝑒

𝜃
= ln(𝛼𝜃∗) + 𝛽𝜃∗𝑒, 

𝑒(𝜃𝜃∗𝛽 + 𝛿) = −𝜃 ln(𝛼𝜃∗), 

(42) 

𝑒 =
−𝜃ln (𝛼𝜃∗)

𝜃𝜃∗𝛽 + 𝛿
. 

(43) 

Here in (42), 𝑒 is eliminated and logarithms are taken from both sides. From 

(1.11) we find 𝜃 

𝒆𝒙𝒑 (−𝛿
𝑒

𝜃
) =

𝑒

𝜃
(𝜃∗ − 1) (−𝛿𝒆𝒙𝒑(−𝛿

𝑒

𝜃
)), 

cancelling 𝒆𝒙𝒑 (−𝛿
𝑒

𝜃
) from both sides gives 

1 =
𝑒

𝜃
(1 − 𝜃∗)𝛿, 

substituting 𝑒 from (43) gives 

1 =
(𝜃∗ − 1)𝛿ln (𝛼𝜃∗)

𝜃𝜃∗𝛽 + 𝛿
, 

now 𝜃 can be expressed in terms of 𝜃∗ solely as 

𝜃 =
(𝜃∗ − 1)𝛿ln (𝛼𝜃∗) − 𝛿

𝜃∗𝛽
. 

(44) 
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Putting (43), (44) into (1.10) leads to the solution of 𝜃∗. Specifically, redefining 

(1.10) in terms of (39) gives 

𝒆𝒙𝒑(−𝛿
𝑒

𝜃
) = 𝜃∗(1 − 𝜃)𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒 + 1), 

putting (43) into this equation results in the following expression 

𝒆𝒙𝒑(𝛿
𝑙𝑛(𝛼𝜃∗)

𝜃𝜃∗𝛽 + 𝛿
)

= 𝜃∗(1 − 𝜃)𝛼𝒆𝒙𝒑(𝛽𝜃∗ [
−𝜃 ln(𝛼𝜃∗)

𝜃𝜃∗𝛽 + 𝛿
])(𝛿𝜃∗ [

−𝜃 ln(𝛼𝜃∗)

𝜃𝜃∗𝛽 + 𝛿
] + 1), 

replacing 𝜃 with its definition from (44) 

exp(
𝛿 ln(𝛼𝜃∗)

(𝜃∗ − 1)𝛿 ln(𝛼𝜃∗) − 𝛿 + 𝛿
)

= 𝜃∗
𝜃∗𝛽 − (𝜃∗ − 1)𝛿 ln(𝛼𝜃∗) + 𝛿

𝜃∗𝛽
𝛼𝒆𝒙𝒑(

1 − (𝜃∗ − 1) ln(𝛼𝜃∗)

𝜃∗ − 1
)(

1 − (𝜃∗ − 1) ln(𝛼𝜃∗)

𝜃∗ − 1
), 

eliminating and rearranging some terms gives a simplified equation 

exp (
1

𝜃∗ − 1
)

=
𝜃∗𝛽(𝜃∗ − 1)𝛿 ln(𝛼𝜃∗) + 𝛿

𝛽
𝛼𝒆𝒙𝒑(

1 − (𝜃∗ − 1) ln(𝛼𝜃∗)

𝜃∗ − 1
)

𝜃∗ − (𝜃∗ − 1)ln (𝛼𝜃∗)

𝜃∗ − 1
, 

combining the exponents gives 

𝒆𝒙𝒑(
1

𝜃∗ − 1
−

1 − (𝜃∗ − 1) ln(𝛼𝜃∗)

𝜃∗ − 1
)

=
𝜃∗𝛽 − (𝜃∗ − 1)𝛿 ln(𝛼𝜃∗) + 𝛿

𝛽
𝛼

𝜃∗ − (𝜃∗ − 1)ln (𝛼𝜃∗)

𝜃∗ − 1
, 

simplifying the power of the exponent yields 

𝛼𝜃∗ =
𝜃∗𝛽 − (𝜃∗ − 1)𝛿 ln(𝛼𝜃∗) + 𝛿

𝛽
𝛼

𝜃∗ − (𝜃∗ − 1)ln (𝛼𝜃∗)

𝜃∗ − 1
, 

finally, we obtain the equation involving only 𝜃∗ to solve for 
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𝛽𝜃∗(𝜃∗ − 1) = (𝜃∗𝛽 − (𝜃∗ − 1)𝛿 ln(𝛼𝜃∗) + 𝛿)(𝜃∗ − (𝜃∗ − 1) ln(𝛼𝜃∗)). (45) 

This equation cannot be explicitly solved for 𝜃∗  but it can be computed 

approximately. Putting 𝛼 = 0.01, 𝛽 = 2, 𝛿 = 2.5 into (45) gives 𝜃∗ = 0.73, putting 

this value into (44) gives 𝜃 = 0.54, and ultimately the equilibrium exchange rate is 

obtained by putting these values in (43) which gives 𝑒 = 0.81. So, the equilibrium 

triple is (𝑒̂, 𝜃, 𝜃∗) = (0.81, 0.54, 0.73).  The derivatives of the exchange rate 

function with respect to 𝜃∗ and 𝜃 are 

𝑒𝜃∗ =
𝛽𝜃2𝜃∗ ln(𝛼𝜃∗) − 𝜃(𝜃𝜃∗𝛽 + 𝛿)

𝜃∗(𝜃𝜃∗𝛽 + 𝛿)2
= −0.49, 

𝑒𝜃 =
−𝛿ln (𝛼𝜃∗)

(𝜃𝜃∗𝛽 + 𝛿)2
= 1.13. 

Using (40)-(42), inequalities (1.16), (1.17) take the form 

𝜃∗(1 − 𝜃)𝑒𝜃(𝜃∗𝑒𝛽2 + 2𝛽) − 1 +
𝛿

𝜃2
(𝑒𝜃𝜃 − 𝑒) < 0, 

𝜃(𝜃∗𝑒𝜃∗ + 𝑒) + 𝛿(1 − 𝜃∗)𝑒𝑒𝜃∗ < 0. 

For (𝑒̂, 𝑒̂𝜃, 𝑒̂𝜃∗ , 𝜃, 𝜃∗) = (0.81, 1.13, −0.49, 0.54, 0.73), these inequalities can be 

verified. 
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Appendix C 

 

In order to ensure that the equilibrium point (𝑒̂, 𝜃, 𝜃∗) = (𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗) obtained 

by solving the system of equations (1.13), (1.14), (1.15), really gives the maximums 

of the gain functions, we proceed by checking the second derivatives 

 

𝜕2

𝜕𝜃2
𝐺(𝑒, 𝜃, 𝜃∗)

=
𝜕

𝜕𝜃

[
 
 
 
 

−
𝑒2

𝜃3
𝐷′ (

𝑒

𝜃
)

+ (
𝑒

𝜃2
𝐷′ (

𝑒

𝜃
) − 𝜃∗𝐷∗′(𝜃∗𝑒))

𝑒2

𝜃2 𝐷′ (
𝑒
𝜃)

𝐷 (
𝑒
𝜃) +

𝑒

𝜃𝐷′ (
𝑒
𝜃)

− 𝜃∗𝐷∗′(𝜃∗𝑒)

]
 
 
 
 

=
𝜕

𝜕𝜃
[
𝑒2

𝜃3
𝛿𝒆𝒙𝒑 (−𝛿

𝑒

𝜃
)

+ (
𝑒

𝜃2
𝛿𝒆𝒙𝒑 (−𝛿

𝑒

𝜃
)

− 𝜃∗𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒

+ 1))

𝑒2

𝜃2 𝛿𝒆𝒙𝒑(−𝛿
𝑒
𝜃)

𝒆𝒙𝒑 (−𝛿
𝑒
𝜃) −

𝑒
𝜃 𝛿𝒆𝒙𝒑(−𝛿

𝑒
𝜃) − 𝜃∗𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒 + 1)

] 

(46) 

where 𝑒  is a shorthand notation for 𝑒(𝜃, 𝜃∗).  Here we substituted 

𝐷 (
𝑒

𝜃
) , 𝐷′ (

𝑒

𝜃
) , 𝐷∗′(𝜃∗𝑒) from (40). Since (46) involves several similar terms, let us 

introduce the following notations for more convenience 

𝑓(𝑒, 𝜃) = 𝒆𝒙𝒑(−𝛿
𝑒

𝜃
), (47) 

𝑔(𝑒) = 𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒 + 1) 

then their derivatives with respect to 𝜃 are 
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𝜕

𝜕𝜃
𝑓(𝑒, 𝜃) =

𝛿

𝜃2
𝒆𝒙𝒑 (−𝛿

𝑒

𝜃
) (𝑒 − 𝜃𝑒𝜃), 

(48) 

𝜕

𝜕𝜃
𝑔(𝑒) = 𝛼𝛽𝜃∗𝑒𝜃𝒆𝒙𝒑(𝛽𝜃∗𝑒)(2 + 𝛽𝜃∗𝑒) 

and the derivative of the exchange rate function (43) with respect to 𝜃 is 

𝜕𝑒

𝜕𝜃
=

−𝛿ln (𝛼𝜃∗)

(𝜃𝜃∗𝛽 + 𝛿)2
, 

applying these notations, (46) now becomes 

𝜕2

𝜕𝜃2
𝐺(𝑒, 𝜃, 𝜃∗)

=
𝜕

𝜕𝜃
[
𝑒2

𝜃3
𝛿𝑓(𝑒, 𝜃)

+ (
𝑒

𝜃2
𝛿𝑓(𝑒, 𝜃) + 𝜃∗𝑔(𝑒))

𝑒2

𝜃2 𝛿𝑓(𝑒, 𝜃)

𝑓(𝑒, 𝜃) −
𝑒
𝜃 𝛿𝑓(𝑒, 𝜃) − 𝜃∗𝑔(𝑒)

]

=
𝑒2

𝜃3
𝛿

𝜕

𝜕𝜃
𝑓(𝑒, 𝜃) + 𝛿𝑓(𝑒, 𝜃)

2𝑒𝑒𝜃𝜃3 − 3𝜃2𝑒2

𝜃4

+ (
𝑒

𝜃2
𝛿𝑓(𝑒, 𝜃)

+ 𝜃∗𝑔(𝑒))
(𝑓(𝑒, 𝜃) −

𝑒
𝜃 𝛿𝑓(𝑒, 𝜃) − 𝜃∗𝑔(𝑒))

𝑒2

𝜃2 𝛿
𝜕
𝜕𝜃

𝑓(𝑒, 𝜃) + 𝛿𝑓(𝑒, 𝜃)
2𝑒𝑒𝜃𝜃2 − 2𝜃𝑒2

𝜃4

(
𝑒
𝜃2 𝛿𝑓(𝑒, 𝜃) + 𝜃∗𝑔(𝑒))

2

−

𝑒2

𝜃2 𝛿𝑓(𝑒, 𝜃) (
𝜕
𝜕𝜃

𝑓(𝑒, 𝜃) −
𝑒
𝜃

𝛿𝑓′(𝑒, 𝜃) − 𝛿𝑓(𝑒, 𝜃)
𝜃𝑒𝜃 − 𝑒

𝜃2 − 𝜃∗ 𝜕
𝜕𝜃

𝑔(𝑒))

(
𝑒
𝜃2 𝛿𝑓(𝑒, 𝜃) + 𝜃∗𝑔(𝑒))

2

+

𝑒2

𝜃2 𝛿𝑓(𝑒, 𝜃)

𝑓(𝑒, 𝜃) −
𝑒
𝜃 𝛿𝑓(𝑒, 𝜃) − 𝜃∗𝑔(𝑒)

(
𝑒

𝜃2
𝛿

𝜕

𝜕𝜃
𝑓(𝑒, 𝜃) + 𝛿𝑓(𝑒, 𝜃)

𝜃2𝑒𝜃 − 2𝜃𝑒

𝜃4

+ 𝜃∗
𝜕

𝜕𝜃
𝑔(𝑒). 

(49) 

Putting the equilibrium values from Appendix A, (𝑒̂, 𝜃, 𝜃∗) = (0.81, 0.54, 0.73)  in 

(49) gives 
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𝐺′′(0.81, 0.54, 0.73) = −0.24 < 0. 

Second derivative of 𝐺∗(𝑒, 𝜃, 𝜃∗) is  

𝜕2

𝜕𝜃2
𝐺∗(𝑒, 𝜃, 𝜃∗)

=
𝜕

𝜕𝜃∗
[
1

𝜃∗
𝐷∗′(𝜃∗𝑒)

− (
1

𝑒
𝐷∗′(𝜃∗𝑒) −

1

𝜃
𝐷′ (

𝑒

𝜃
))

𝑒𝐷∗′(𝜃∗𝑒)

𝑓(𝑒, 𝜃) −
𝑒
𝜃

𝛿𝑓(𝑒, 𝜃) − 𝜃∗𝑔(𝑒)

=
𝜕

𝜕𝜃∗
[
1

𝜃∗
𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒 + 1) −

1

𝑒
𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒 + 1)

+
𝛿

𝜃
𝒆𝒙𝒑(−𝛿

𝑒

𝜃
)

𝑒𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒 + 1)

𝒆𝒙𝒑(−𝛿
𝑒
𝜃) −

𝑒
𝜃 𝛿𝒆𝒙𝒑(−𝛿

𝑒
𝜃) − 𝜃∗𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒 + 1)

]. 

(50) 

Similarly to (46), here we also substituted 𝐷 (
𝑒

𝜃
) , 𝐷′ (

𝑒

𝜃
) , 𝐷∗′(𝜃∗𝑒)  from (40). 

Introduce the functions 

𝑓(𝑒, 𝜃∗) = 𝛼𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝛽𝜃∗𝑒 + 1), (51) 

𝑔(𝑒) = 𝒆𝒙𝒑 (−𝛿
𝑒

𝜃
) 

with their derivatives 

𝜕

𝜕𝜃
𝑓(𝑒, 𝜃∗) = 𝛼𝛽𝒆𝒙𝒑(𝛽𝜃∗𝑒)(𝜃∗𝑒𝜃∗ + 𝑒)(2 + 𝛽𝜃∗𝑒), 

(52) 

𝜕

𝜕𝜃∗
𝑔(𝑒) = −𝛿

𝑒

𝜃
𝑒𝜃∗𝒆𝒙𝒑(−𝛿

𝑒

𝜃
). 

Derivative of the exchange rate function (43) with respect to 𝜃∗ is 

 
𝜕𝑒

𝜕𝜃∗
=

𝛽𝜃2𝜃∗ ln(𝛼𝜃∗) − 𝜃(𝜃𝜃∗𝛽 + 𝛿)

𝜃∗(𝜃𝜃∗𝛽 + 𝛿)2
. 
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Putting these values in (50) yields 

 

𝜕2

𝜕𝜃∗2 𝐺∗(𝑒, 𝜃, 𝜃∗) =
𝜕

𝜕𝜃∗
[
1

𝜃∗
𝑓(𝑒, 𝜃∗) − (

1

𝑒
𝑓(𝑒, 𝜃∗) +

𝛿

𝜃
𝑔(𝑒))

𝑒𝑓(𝑒, 𝜃∗)

𝑔(𝑒) −
𝑒
𝜃

𝛿𝑔(𝑒) − 𝜃∗𝑓(𝑒, 𝜃∗)
]

=
𝑓(𝑒, 𝜃∗)

𝜃∗
−

𝑓(𝑒, 𝜃∗)

𝜃∗2

− (
1

𝑒
𝑓(𝑒, 𝜃∗) +

𝛿

𝜃
𝑔(𝑒))

(𝑔(𝑒) −
𝑒
𝜃

𝛿𝑔(𝑒) − 𝜃∗𝑓(𝑒, 𝜃∗))(𝑒
𝜕

𝜕𝜃∗ 𝑓(𝑒, 𝜃∗) + 𝑒𝜃∗𝑓(𝑒, 𝜃∗) − 𝑒𝑓(𝑒, 𝜃∗)(
𝜕

𝜕𝜃∗ 𝑔(𝑒) −
𝑒
𝜃

𝛿
𝜕

𝜕𝜃∗ 𝑔(𝑒)

(𝑔(𝑒) −
𝑒

𝜃
𝛿𝑔(𝑒) − 𝜃

∗
𝑓 (𝑒,𝜃

∗
))

2

+
𝑒𝑓 (𝑒,𝜃

∗
)

𝑔(𝑒) −
𝑒

𝜃
𝛿𝑔(𝑒) − 𝜃

∗
𝑓 (𝑒,𝜃

∗
)
(
1

𝑒

𝜕

𝜕𝜃
∗ 𝑓 (𝑒,𝜃

∗
)−

𝑒
𝜃
∗

𝑒2
𝑓 (𝑒,𝜃

∗
) +

𝜕
𝜃

𝜕

𝜕𝜃
∗𝑔(𝑒)) 

 

from which we obtain 

𝐺∗′′(0.81, 0.54, 0.73) = −0.02 < 0 

by putting the equilibrium values. 

So we can conclude that since for our example 𝐺∗′′(0.81, 0.54, 0.73) < 0  and 

𝐺′′(0.81, 0.54, 0.73) < 0, (𝑒(𝜃, 𝜃∗), 𝜃, 𝜃∗) = (0.81, 0.54, 0.73) represents the Nash 

equilibrium. Imposing these tariffs on imported commodities ensures maximum 

gains from trade for both nations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



107 
 

Appendix D 

 

Solution to (2.4): The goal is to express ℎ, 𝑓, ℎ∗, 𝑓∗ in terms of 𝑡 and 𝑡∗. 

 

𝜕𝜋

𝜕ℎ
= 𝑎 − 𝑓∗ − 2ℎ = 0 => ℎ̂ =

𝑎 − 𝑓∗

2
, 

(53) 

𝜕𝜋

𝜕𝑓
= 𝑎 − ℎ∗ − 2𝑓 − 𝑡∗ = 0 => 𝑓 =

𝑎 − ℎ∗ − 𝑡∗

2
, 

(54) 

𝜕𝜋

𝜕ℎ∗
= 𝑎 − 𝑓 − 2ℎ∗ = 0 => ℎ̂∗ =

𝑎 − 𝑓

2
, 

(55) 

𝜕𝜋

𝜕𝑓∗
= 𝑎 − ℎ − 2𝑓∗ − 𝑡 = 0 => 𝑓∗ =

𝑎 − ℎ − 𝑡

2
, 

(56) 

where 𝑎 > 𝑓∗, 𝑎 > ℎ∗ + 𝑡∗, 𝑎 > 𝑓, 𝑎 > ℎ + 𝑡. Putting (56) in (53) gives 

ℎ̂ =
𝑎 + 𝑡

3
, (57) 

putting (55) into (54) yields 

𝑓 =
𝑎 − 2𝑡∗

3
, 

(58) 

and putting (58) into (55) gives 

ℎ̂∗ =
𝑎 + 𝑡∗

3
, 

(59) 

while putting (57) into (56) gives 

𝑓∗ =
𝑎 − 2𝑡

3
. 

(60) 

Solution to (2.6): 

𝜕

𝜕𝑡
 𝑊̂(𝑡, 𝑡∗) =

𝜕

𝜕𝑡
[
1

2
(
𝑎 + 𝑡

3
+

𝑎 − 2𝑡

3
)
2

+ (𝑎 −
𝑎 + 𝑡

3
−

𝑎 − 2𝑡

3
)
𝑎 + 𝑡

3

+ (𝑎 −
𝑎 + 𝑡∗

3
−

𝑎 − 2𝑡

3
)
𝑎 − 2𝑡∗

3
− 𝑡∗

𝑎 − 2𝑡∗

3
+ 𝑡

𝑎 − 2𝑡

3
]

=
𝜕

𝜕𝑡
[
1

2

2𝑎 − 𝑡2

3
+ (

𝑎 + 𝑡

3
)
2

]

= −
1

9
(2𝑎 − 𝑡) +

2

9
(𝑎 + 𝑡) +

1

3
𝑎 −

4

3
𝑡 = 0. 

(61) 
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Solving for 𝑡 gives 𝑡 =
𝑎

3
. Similarly 

𝜕

𝜕𝑡∗
 𝑊̂∗(𝑡, 𝑡∗) =

𝜕

𝜕𝑡∗
[
1

2
(
𝑎 + 𝑡∗

3
+

𝑎 − 2𝑡

3
)
2

+ (𝑎 −
𝑎 + 𝑡∗

3
−

𝑎 − 2𝑡∗

3
)
𝑎 + 𝑡∗

3

+ (𝑎 −
𝑎 + 𝑡

3
−

𝑎 − 2𝑡

3
)
𝑎 − 2𝑡

3
− 𝑡

𝑎 − 2𝑡

3
+ 𝑡∗

𝑎 − 2𝑡∗

3
]

=
𝜕

𝜕𝑡∗
[
1

2
(
2𝑎 − 𝑡∗

3
)
2

+ (
𝑎 + 𝑡∗

3
)
2

+
1

3
(𝑡∗𝑎 − 2𝑡∗2)

2
]

= −
1

9
(2𝑎 − 𝑡∗) +

2

9
(𝑎 + 𝑡∗) +

𝑎

3
−

4

3𝑡∗
= 0 

 

Solving for 𝑡∗ gives 𝑡∗ = 𝑎/3. Solution to (2.9): 
𝜕𝜋

𝜕ℎ
 and 

𝜕𝜋

𝜕ℎ
 are the same as (53) and 

(54), while ℎ and 𝑓  correspond to (57) and (58) respectively. Differentiating 𝜋∗ 

from (2.7) with respect to ℎ∗ and 𝑓∗ gives 

𝜕𝜋∗

𝜕ℎ∗
= 𝑒(𝑎 − 2𝑎ℎ∗ − 𝑓) = 0 => ℎ̂∗ =

𝑎 − 𝑓

2
, 

(62) 

putting (58) into (62) gives 

ℎ∗ =
𝑎 + 𝑡∗

3
. 

(63) 

Since 𝜋∗(𝑡, 𝑡∗, ℎ, 𝑓, ℎ∗, 𝑓∗) =
𝑝𝑓∗

𝑝∗𝑓
[(𝑎 − ℎ∗ − 𝑓)ℎ∗ + (𝑎 − ℎ − 𝑓∗)𝑓∗ − 𝑡𝑓∗], we have  

𝜕𝜋∗

𝜕𝑓∗
= −

𝑝

𝑝∗𝑓
[3𝑓∗2 + 2(𝑡 + ℎ − 𝑎)𝑓∗ − (𝑎 − ℎ∗ − 𝑓)ℎ∗] = 0, 

(64) 

solving (64) results in 

𝑓∗ =
−𝑡 − ℎ + 𝑎 + √(𝑡 + ℎ − 𝑎)2 + 3(𝑎 − ℎ∗ − 𝑓)ℎ∗

3
 

(65) 
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Appendix E 
 

Table E1 illustrates a historical data for Vanguard Total Stock Market ETF (VTI) 

and iShares 7-10 Year Treasury Bond ETF (EIF) with the daily returns computed. 

(Source: www.nasdaq.com) Based on which we optimize the portfolio in three 

dimensions. Spot prices are given on a daily bases for four months. 𝑇 =  30. 

Date VTI IEF 𝑅1 𝑅2 

4/18/2019 148.27 105.32 0.001 0.002 

4/17/2019 148.05 105.07 -0.004 0.000 

4/16/2019 148.60 105.05 0.000 -0.003 

4/15/2019 148.56 105.41 -0.001 0.001 

4/12/2019 148.68 105.27 0.007 -0.005 

4/11/2019 147.69 105.76 0.000 -0.002 

4/10/2019 147.70 106.00 0.005 0.002 

4/9/2019 147.02 105.75 -0.006 0.002 

4/8/2019 147.91 105.56 0.001 -0.002 

4/5/2019 147.78 105.73 0.005 0.000 

4/4/2019 147.04 105.68 0.002 0.001 

4/3/2019 146.73 105.57 0.002 -0.003 

4/2/2019 146.38 105.90 0.000 0.002 

4/1/2019 146.39 105.72 0.012 -0.009 

3/29/2019 144.71 106.67 0.007 -0.002 

3/28/2019 143.76 106.84 0.004 0.000 

3/27/2019 143.13 106.83 -0.005 0.003 

3/26/2019 143.79 106.52 0.008 -0.001 

3/25/2019 142.69 106.61 -0.006 0.003 

3/22/2019 143.56 106.34 -0.021 0.007 

3/21/2019 146.62 105.56 0.012 0.000 

Table E1: Historical Data for VTI and EIF, Daily Returns 

http://www.nasdaq/
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Computations of  𝜇̅  and  𝜎𝑖  for 𝑗 = 1,2  from (3.8) and (3.9) for various 

combinations of weights is illustrated in Table E2. The last columns indicate 𝜎̃ from 

(3.12) and 𝑃(𝜏𝑚 ≤ 𝑇) from (3.17).  

 

𝑞1 𝑞2 𝜎1 𝜎2 𝜇 𝜎̃ 𝑃(𝜏𝑚 ≤ 𝑇) 

0.1 0.9 0.0006 0.0028 0.0004 0.0028 0.6410 

0.2 0.8 0.0013 0.0024 0.0005 0.0028 0.6418 

0.3 0.7 0.0020 0.0021 0.0006 0.0029 0.6397 

0.4 0.6 0.0026 0.0018 0.0007 0.0032 0.6210 

0.5 0.5 0.0033 0.0015 0.0008 0.0036 0.5953 

0.6 0.4 0.0040 0.0012 0.0009 0.0041 0.5734 

0.7 0.3 0.0046 0.0009 0.0010 0.0047 0.5579 

0.8 0.2 0.0052 0.0006 0.0011 0.0053 0.5478 

0.9 0.1 0.0059 0.0003 0.0012 0.0060 0.5414 

1.0 0.0 0.0066 -8.9E-06 0.0013 0.0066 0.5376 

Table E2: Portfolios of Two Assets 

The quantities from (3.25) are given in Table E3 below 

𝑞1 𝑞2 𝑚 𝐸[𝑅𝑝] 𝐸[𝜏𝑚 ∧ 𝑇] 

0.1 0.9 -0.0038 0.0117 14 

0.2 0.8 -0.0031 0.0148 13 

0.3 0.7 -0.0030 0.0179 13 

0.4 0.6 -0.0033 0.0209 14 

0.5 0.5 -0.0040 0.0239 14 

0.6 0.4 -0.0049 0.0269 15 

0.7 0.3 -0.0060 0.0299 16 

0.8 0.2 -0.0071 0.0329 16 

0.9 0.1 -0.0083 0.0359 16 

1.0 0.0 -0.0095 0.0388 17 

Table E3: Three Dimensions for Two Asset Portfolios 
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Table E4 illustrates the annual spot prices from 2009 to 2019 (Source: 

www.nasdaq.com). The annual spot prices of four common stocks are given with 

their rates of returns – Travelzoo (TZOO), AXT Inc. (AXTI), Universal Forest 

Products (UFPI), Advanced Micro Devices (AMD). The investment horizon is 

taken to be 10 years. Unlike the previous example, here we take the annual spot 

prices. This example intends to illustrate 𝐸[𝜏𝑚 ∧ 𝑇] within the investment horizon 

[0,T]. 

 

Date TZOO AXTI UFPI AMD 𝑅1 𝑅2 𝑅3 𝑅4 

16:00 18.26 5.55 36.65 27.88 0.8576 0.2759 0.4118 0.5103 

12/31/2018 9.83 4.35 25.96 18.46 0.5240 -0.500 -0.310 0.7957 

12/29/2017 6.45 8.7 37.62 10.28 -0.314 0.813 0.1045 -0.094 

12/30/2016 9.4 4.8 34.06 11.34 0.123 0.9355 0.4945 2.9512 

12/31/2015 8.37 2.48 22.79 2.87 -0.337 -0.114 0.2852 0.0749 

12/31/2014 12.62 2.8 17.33 2.67 -0.408 0.0728 0.0203 -0.310 

12/31/2013 21.32 2.61 17.38 3.87 0.1227 -0.071 0.3707 0.6125 

12/31/2012 18.99 2.81 12.68 2.4 -0.227 -0.326 0.2323 -0.556 

12/30/2011 24.58 4.17 10.29 5.4 -0.406 -0.601 -0.206 -0.340 

12/31/2010 41.375 10.44 12.97 8.18 2.367 2.2123 0.0568 -0.155 

12/31/2009 12.29 3.25 12.27 9.68     

Table E4: Historical Data for TZOO, AXTI, UFPI, AMD, annual returns 

 

 

 

 

 

 

http://www.nasdaq/
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Computations of  𝜇̅  and  𝜎𝑖  for 𝑗 = 1,2,3,4  from (3.8) and (3.9) for various 

combinations of weights are shown in E5. The last column contains computations 

of  𝜎̃ from (3.12).  

𝑞1 𝑞2 𝑞3 𝑞4 𝜎1 𝜎2 𝜎3 𝜎4 𝜇 𝜎̃ 

0.0 0.0 0.6 0.4 0.0200 0.0905 0.0807 0.4374 0.0296 0.4544 

0.0 0.0 0.8 0.2 0.0095 0.0722 0.0717 0.2726 0.0958 0.2911 

0.0 0.1 0.6 0.3 0.0626 0.1411 0.0753 0.3588 0.0159 0.3978 

0.0 0.1 0.7 0.2 0.0573 0.1320 0.0708 0.2764 0.0551 0.3195 

0.0 0.1 0.8 0.1 0.0520 0.1228 0.0663 0.1940 0.084 0.2446 

0.0 0.1 0.9 0.0 0.0467 0.1137 0.0618 0.1116 0.1026 0.1771 

0.0 0.2 0.6 0.2 0.1051 0.1918 0.0670 0.2801 0.0021 0.3622 

0.0 0.2 0.7 0.1 0.0998 0.1826 0.0654 0.1977 0.0422 0.2944 

0.0 0.2 0.8 0.0 0.0945 0.1735 0.0609 0.1153 0.0720 0.2367 

0.1 0.0 0.6 0.3 0.0819 0.1236 0.0699 0.3494 0.0201 0.3860 

0.1 0.0 0.7 0.2 0.0767 0.1145 0.0653 0.2670 0.0580 0.3075 

0.1 0.0 0.8 0.1 0.0714 0.1053 0.0608 0.1846 0.0860 0.2323 

0.1 0.1 0.6 0.2 0.1244 0.1743 0.0645 0.2708 0.0064 0.3512 

0.1 0.1 0.7 0.1 0.1192 0.1651 0.0600 0.1884 0.045 0.2838 

0.1 0.1 0.8 0.0 0.1139 0.1560 0.0554 0.1060 0.0738 0.2271 

0.1 0.2 0.7 0.0 0.1617 0.2160 0.0546 0.1097 0.0324 0.2962 

0.2 0.0 0.7 0.1 0.1385 0.1476 0.0545 0.1790 0.0481 0.2757 

0.2 0.0 0.8 0.0 0.1333 0.1385 0.0500 0.0966 0.0753 0.2208 

0.3 0.0 0.06 0.1 0.2057 0.1899 0.0481 0.1734 0.0011 0.3328 

0.3 0.0 0.7 0.0 0.2004 0.1807 0.0436 0.0910 0.0382 0.2881 

Table E5: Portfolios of Multi Assets 
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Ultimately the three dimensions are generated in Table E6. This table corresponds 

to the efficient surface similar to Figure 3.4. Since there are too many combinations 

of weights constructing different portfolios, Table E6 illustrates all combinations 

of weights of four assets. Detailed results are provided in the accompanying 

spreadsheet. 

𝑞1 𝑞2 𝑞3 𝑞4 𝑚 𝐸[𝑅𝑝] 𝐸[𝜏𝑚 ∧ 𝑇] 

0.0 0.0 0.6 0.4 -0.5503 2.2320 0.2956 

0.0 0.0 0.8 0.2 -0.3636 0.4641 0.9584 

0.0 0.1 0.6 0.3 -0.4528 2.3620 0.1585 

0.0 0.1 0.7 0.2 -0.3662 1.4853 0.5505 

0.0 0.1 0.8 0.1 -0.3002 0.5336 0.8398 

0.0 0.1 0.9 0.0 -0.2674 -0.2307 1.0263 

0.0 0.2 0.6 0.2 -0.3961 2.5076 0.0206 

0.0 0.2 0.7 0.1 -0.3346 1.7371 0.4218 

0.0 0.2 0.8 0.0 -0.3044 0.8344 0.7203 

0.1 0.0 0.6 0.3 -0.4321 2.2494 0.2011 

0.1 0.0 0.7 0.2 -0.3426 1.3555 0.5799 

0.1 0.0 0.8 0.1 -0.2735 0.4101 0.8560 

0.1 0.1 0.6 0.2 -0.3688 2.3515 0.0643 

0.1 0.1 0.7 0.1 -0.3043 1.5633 0.4524 

0.1 0.1 0.8 0.0 -0.2726 0.6937 0.7377 

0.1 0.2 0.7 0.0 -0.3345 1.9615 0.3241 

0.2 0.0 0.6 0.2 -0.3578 2.2738 0.1064 

0.2 0.0 0.7 0.1 -0.2928 1.4642 0.4813 

0.2 0.0 0.8 0.2 -0.2617 0.6079 0.7534 

0.3 0.0 0.6 0.1 -0.3488 2.4285 0.0115 

0.3 0.0 0.7 0.0 -0.3240 1.8054 0.3824 

Table E6: Three Dimensions for Multi Asset Portfolios 
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Table E7 shows the monthly spot prices of three common stocks – Apple Inc 

(AAPL), JPMorgan Chase Co. (JPM) and Walmart Inc. (WMT) from April the 28th, 

2017 to 1st of April, 2019. T = 30 months. (Source www.nasdaq.com) 

Date AAPL JPM WMT 𝑅1 𝑅2 𝑅3 

16:00 203.86 113.46 103.18 0.0732 0.1208 0.0579 

3/29/2019 189.95 101.23 97.53 0.0970 -0.0300 -0.015 

2/28/2019 173.15 104.36 98.99 0.0403 0.0083 0.0330 

1/31/2019 166.44 103.5 95.83 0.0552 0.0602 0.0288 

12/31/2018 157.74 97.62 93.15 -0.1167 -0.1220 -0.0461 

11/30/2018 178.58 111.19 97.65 -0.1840 0.0199 -0.0262 

10/31/2018 218.86 109.02 100.28 -0.0304 -0.0339 0.0678 

9/28/2018 225.74 112.84 93.91 -0.0083 -0.0152 -0.0203 

8/31/2018 227.63 114.58 95.86 0.1962 -0.0032 0.0743 

7/31/2018 190.29 114.95 89.23 0.0280 0.1032 0.0418 

6/29/2018 185.11 104.2 85.65 -0.0094 -0.0263 0.0377 

5/31/2018 186.87 107.01 82.54 0.1308 -0.0163 -0.067 

4/30/2018 165.26 108.78 88.46 -0.0150 -0.0108 -0.0057 

3/29/2018 167.78 109.97 88.97 -0.0581 -0.0479 -0.0116 

2/28/2018 178.12 115.5 90.01 0.06388 -0.0015 -0.1556 

1/31/2018 167.43 115.67 106.6 -0.0106 0.0816 0.0795 

12/29/2017 169.23 106.94 98.75 -0.0153 0.0232 0.0156 

11/30/2017 171.85 104.52 97.23 0.0166 0.0389 0.1136 

10/31/2017 169.04 100.61 87.31 0.0968 0.0534 0.1174 

9/29/2017 154.12 95.51 78.14 -0.0602 0.0508 0.0009 

8/31/2017 164 90.89 78.07 0.1027 -0.0100 -0.0240 

7/31/2017 148.73 91.8 79.99 0.0327 0.0044 0.0570 

6/30/2017 144.02 91.4 75.68 -0.0572 0.1126 -0.0372 

5/31/2017 152.76 82.15 78.6 0.0634 -0.0558 0.0455 

Table E7: Historical Data for AAPL, JPM and WMT, Daily Returns 

http://www.nasdaq.com/
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Computations of  𝜇̅  and  𝜎𝑗  for 𝑗 = 1,2,3  from (3.8) and (3.9} for various 

combinations of weights are shown in Table E8. We also compute  𝜎̃ from (3.12) 

illustrated in the last column. First three columns denote the weights, columns 4-

6 denote the  𝜎𝑗 and the last columns denote   𝜇 and    𝜎̃. 

𝑞1 𝑞2 𝑞3 𝜎1 𝜎2 𝜎3 𝜇 𝜎̃ 

0.00 0.00 1.00 0.0009 0.00010 0.0036 0.0151 0.0741 

0.00 0.10 0.90 0.0008 0.0013 0.0033 0.0149 0.0735 

0.00 0.20 0.08 0.0008 0.0014 0.0031 0.0146 0.0729 

0.00 0.30 0.70 0.0007 0.0017 0.0028 0.0144 0.0722 

0.00 0.40 0.60 0.0007 0.0019 0.0026 0.0141 0.0716 

0.00 0.50 0.50 0.0007 0.0019 0.0026 0.0141 0.0716 

0.00 0.60 0.40 0.0006 0.0023 0.0020 0.0137 0.0704 

0.00 0.70 0.30 0.0006 0.0025 0.0018 0.0134 0.0697 

0.00 0.80 0.20 0.0005 0.0027 0.0015 0.0131 0.0691 

0.00 0.90 0.10 0.0005 0.0030 0.0013 0.0129 0.0684 

0.00 1.00 0.00 0.0004 0.0032 0.0010 0.0127 0.0677 

0.10 0.00 0.90 0.0015 0.0010 0.0033 0.0154 0.0757 

0.10 0.10 0.80 0.0014 0.0012 0.0031 0.0151 0.0751 

0.10 0.20 0.70 0.0014 0.0014 0.0028 0.0149 0.0745 

0.10 0.30 0.60 0.0013 0.0016 0.0025 0.0147 0.0739 

0.10 0.40 0.50 0.0013 0.0018 0.0023 0.0144 0.0732 

0.10 0.50 0.40 0.0012 0.0020 0.0020 0.0142 0.0726 

0.10 0.60 0.30 0.0012 0.0022 0.0018 0.0139 0.0720 

0.10 0.70 0.20 0.0011 0.0025 0.0015 0.0137 0.00714 

0.10 0.80 0.10 0.0011 0.0027 0.0013 0.0135 0.0707 

0.10 0.90 0.00 0.0010 0.0029 0.0010 0.0132 0.0701 

Table E8: Portfolios of Three Assets 
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Table E9 illustrates the ultimate result of combinations 𝑚, 𝐸[𝑅𝑇], 𝐸[𝜏𝑚 ∧ 𝑇] from 

(3.25) 

𝑞1 𝑞2 𝑞3 𝑚 𝐸[𝑅𝑝] 𝐸[𝜏𝑚 ∧ 𝑇] 

0.00 0.00 1.00 -0.0854 0.4527 14.2704 

0.00 0.10 0.90 -0.0789 0.4455 13.5044 

0.00 0.20 0.80 -0.0734 0.4383 12.8292 

0.00 0.30 0.70 -0.0690 0.4311 12.2883 

0.00 0.40 0.60 -0.0661 0.4239 11.9260 

0.00 0.50 0.50 -0.0648 0.4167 11.7800 

0.00 0.60 0.40 -0.0652 0.4095 11.8718 

0.00 0.70 0.30 -0.0672 0.4023 12.2005 

0.00 0.80 0.20 -0.0708 0.3951 12.7428 

0.00 0.90 0.10 -0.0758 0.3878 13.4597 

0.00 1.00 0.00 -0.0819 0.3806 14.3059 

0.10 0.00 0.90 -0.0786 0.4613 13.2018 

0.10 0.10 0.80 -0.0722 0.4541 12.4184 

0.10 0.20 0.70 -0.0670 0.4470 11.7459 

0.10 0.30 0.60 -0.0630 0.4398 11.2339 

0.10 0.40 0.50 -0.0606 0.4325 10.9307 

0.10 0.50 0.40 -0.0600 0.4253 10.8727 

0.10 0.60 0.30 -0.0611 0.4181 11.0741 

0.10 0.70 0.20 -0.0640 0.4109 11.5217 

0.10 0.80 0.10 -0.0684 0.4037 12.1791 

0.10 0.90 0.00 -0.0742 0.3965 12.9981 

Table E9: Three Dimensions for Three Asset Portfolios 
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𝑞1 𝑞2 𝑞3 𝑚 𝐸[𝑅𝑝] 𝐸[𝜏𝑚 ∧ 𝑇] 

0.20 0.00 0.80 -0.0739 0.4700 12.4007 

0.20 0.10 0.70 -0.0678 0.4628 11.6412 

0.20 0.20 0.60 -0.0630 0.4556 11.0151 

0.20 0.30 0.50 -0.0597 0.4484 10.5739 

0.20 0.40 0.40 -0.0580 0.4412 10.3642 

0.20 0.50 0.30 -0.0581 0.4340 10.4152 

0.20 0.60 0.20 -0.0601 0.4268 10.7289 

0.20 0.70 0.10 -0.0638 0.4195 11.2796 

0.20 0.80 0.00 -0.0689 0.4123 12.0223 

0.30 0.00 0.70 -0.0717 0.4786 11.9286 

0.30 0.10 0.60 -0.0662 0.4714 11.2386 

0.30 0.20 0.50 -0.0620 0.4642 10.7021 

0.30 0.30 0.40 -0.0595 0.4570 10.3672 

0.30 0.40 0.30 -0.0586 0.4498 10.2716 

0.30 0.50 0.20 -0.0596 0.4426 10.4322 

0.30 0.60 0.10 -0.0622 0.4354 10.8389 

0.30 0.70 0.00 -0.0665 0.4282 11.4581 

0.40 0.00 0.60 -0.0721 0.4872 11.8105 

0.40 0.10 0.50 -0.0674 0.4800 11.2274 

0.40 0.20 0.40 -0.0641 0.4728 10.8102 

0.40 0.30 0.30 -0.0624 0.4656 10.5976 

0.40 0.40 0.20 -0.0623 0.4584 10.6146 

Table E9: Three Dimensions for Three Asset Portfolios 
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𝑞1 𝑞2 𝑞3 𝑚 𝐸[𝑅𝑝] 𝐸[𝜏𝑚 ∧ 𝑇] 

0.40 0.50 0.10 -0.0639 0.4512 10.8655 

0.40 0.60 0.00 -0.0672 0.4440 11.3321 

0.50 0.00 0.50 -0.0751 0.4958 12.0248 

0.50 0.10 0.40 -0.0713 0.4886 11.5678 

0.50 0.20 0.30 -0.0689 0.4814 11.2775 

0.50 0.30 0.20 -0.0680 0.4742 11.1812 

0.50 0.40 0.10 -0.0686 0.4670 11.2914 

0.50 0.50 0.00 -0.0708 0.4598 11.6033 

0.60 0.00 0.40 -0.0805 0.5044 12.5119 

0.60 0.10 0.30 -0.0776 0.4972 12.1798 

0.60 0.20 0.20 -0.0759 0.4900 12.0057 

0.60 0.30 0.10 -0.0759 0.4828 12.0052 

0.60 0.40 0.00 -0.0770 0.4756 12.1823 

0.70 0.10 0.20 -0.0857 0.5058 12.9739 

0.70 0.20 0.10 -0.0848 0.4986 12.8948 

0.70 0.30 0.00 -0.0852 0.4914 12.9658 

0.80 0.00 0.20 -0.0967 0.5215 14.0020 

0.80 0.10 0.10 -0.0953 0.5143 13.8710 

0.80 0.20 0.00 -0.0950 0.5071 13.8643 

0.90 0.00 0.10 -0.1068 0.5301 14.8721 

0.90 0.10 0.00 -0.1060 0.5229 14.8114 

1.00 0.00 0.00 -0.1179 0.5386 15.7629 

Table E9: Three Dimensions for Three Asset Portfolios 
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As a comparison, Table E10 illustrates the portfolio with the same assets optimized 

under the Mean-Variance framework. This table corresponds to the efficient 

frontier given in the example. 

 

𝑞1 𝑞2 𝑞3 𝐸[𝑅] 𝜎2 𝜎 

0.00 0.00 1.00 0.0151 0.0036 0.0598 

0.00 0.10 0.90 0.0149 0.0031 0.0558 

0.00 0.20 0.80 0.0146 0.0027 0.0524 

0.00 0.30 0.70 0.0144 0.0025 0.0496 

0.00 0.40 0.60 0.0141 0.0023 0.0478 

0.00 0.50 0.50 0.0139 0.0022 0.0468 

0.00 0.60 0.40 0.0137 0.0022 0.0469 

0.00 0.70 0.30 0.0134 0.0023 0.0480 

0.00 0.80 0.20 0.0132 0.0025 0.0500 

0.00 0.90 0.10 0.0129 0.0028 0.0528 

0.00 1.00 0.00 0.0127 0.0032 0.0563 

0.10 0.00 0.90 0.0154 0.0031 0.0559 

0.10 0.10 0.80 0.0151 0.0027 0.0520 

0.10 0.20 0.70 0.0149 0.0024 0.0487 

0.10 0.30 0.60 0.0147 0.0021 0.0462 

0.10 0.40 0.50 0.0144 0.0020 0.0447 

0.10 0.50 0.40 0.0142 0.0019 0.0441 

0.10 0.60 0.30 0.0139 0.0020 0.0447 

0.10 0.70 0.20 0.0137 0.0021 0.0462 

0.10 0.80 0.10 0.0135 0.0024 0.0487 

0.10 0.90 0.00 0.0132 0.0027 0.0520 

0.20 0.00 0.80 0.0157 0.0028 0.0533 

Table E10: Mean-Variance Pairs 
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Table E11 illustrates the daily spot prices from March the 25th, 2019 to 23rd of April, 

2019 (Source: www.nasdaq.com) for three common stocks – YUMA Energy Inc 

(YUMA), Immunic Inc. (IMUX), Savara Inc (SVRA) with their rates of returns. 

T=30. Unlike the previous example, here we take the daily spot prices. 

Date YUMA IMUX SVRA 𝑅1 𝑅2 𝑅3 

4/23/2019 0.355 17.35 10.7 0.6136 0.2133 0.1088 

4/22/2019 0.22 14.3 9.65 0.2557 -0.1222 0.0354 

4/18/2019 0.1752 16.29 9.32 -0.1314 0.1352 0.0344 

4/17/2019 0.2017 14.35 9.01 0.3447 -0.1196 -0.008 

4/16/2019 0.15 16.3 9.08 -0.1892 -0.3242 -0.0011 

4/15/2019 0.185 24.12 9.09 -0.0537 -0.2735 -0.0401 

4/12/2019 0.1955 33.2 9.47 0.0736 0.0778 -0.0094 

4/11/2019 0.1821 30.804 9.56 -0.2251 0.3144 0.0063 

4/10/2019 0.235 23.436 9.5 0.0000 -0.1849 0.0556 

4/9/2019 0.235 28.752 9 0.3824 -0.0133 -0.0033 

4/8/2019 0.17 29.14 9.03 0.4167 0.4173 0.0261 

4/5/2019 0.12 20.56 8.8 0.0000 1.4582 -0.0112 

4/4/2019 0.12 8.364 8.9 -0.0400 0.0034 0.0023 

4/3/2019 0.125 8.336 8.88 0.0000 0.0589 0.0559 

4/2/2019 0.125 7.872 8.41 -0.1554 -0.0386 0.0646 

4/1/2019 0.148 8.188 7.9 0.2437 0.0386 0.0719 

3/29/2019 0.119 7.884 7.37 0.0540 0.0144 -0.016 

3/28/2019 0.1129 7.772 7.49 0.0000 -0.0122 -0.0730 

3/27/2019 0.1129 7.868 8.08 -0.0053 -0.0475 0.0215 

3/26/2019 0.1135 8.26 7.91 -0.0291 -0.0282 -0.0247 

3/25/2019 0.1169 8.5 8.11    

Table E11: Historical Data for YUMA, IMUX and SVRA, Daily Returns 
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We compute  𝜇̅ and  𝜎𝑗 for 𝑗 = 1,2,3 from (3.8) and (3.9) for various combinations 

of weighs. We also compute  𝜎̃ from (3.12). This information is summarized in 

Table E12. 

𝑞1 𝑞2 𝑞3 𝜎1 𝜎2 𝜎3 𝜇 𝜎̃ 

0.40 0.60 0.00 0.0227 0.0803 0.0013 0.0727 0.0835 

0.50 0.00 0.50 0.0256 0.0029 0.0024 0.0458 0.0259 

0.50 0.10 0.40 0.0258 0.0159 0.0023 0.0517 0.0304 

0.50 0.20 0.30 0.0261 0.0289 0.0021 0.0574 0.0390 

0.50 0.30 0.20 0.0264 0.0419 0.0019 0.0629 0.0496 

0.50 0.40 0.10 0.0266 0.0549 0.0018 0.0682 0.0610 

0.50 0.50 0.00 0.0269 0.0679 0.0016 0.0734 0.0730 

0.60 0.00 0.40 0.0301 0.0035 0.0026 0.0519 0.0304 

0.60 0.10 0.30 0.0303 0.0165 0.0024 0.0577 0.0346 

0.60 0.20 0.20 0.0306 0.0295 0.0022 0.0633 0.0426 

0.60 0.30 0.10 0.0309 0.0425 0.0021 0.0688 0.0525 

0.60 0.40 0.00 0.0311 0.0555 0.0019 0.0741 0.0636 

0.70 0.00 0.30 0.0346 0.0041 0.0027 0.0580 0.0349 

0.70 0.10 0.20 0.0348 0.0171 0.0025 0.0637 0.0389 

0.70 0.20 0.10 0.0351 0.0301 0.0024 0.0693 0.0463 

0.70 0.30 0.00 0.0354 0.0430 0.0022 0.0747 0.0557 

0.80 0.00 0.20 0.0390 0.0046 0.0029 0.0641 0.0394 

0.80 0.10 0.10 0.0393 0.0176 0.0027 0.0697 0.0432 

0.80 0.20 0.00 0.0396 0.0306 0.0025 0.0752 0.0501 

0.90 0.00 0.10 0.0435 0.0052 0.0030 0.0701 0.0440 

0.90 0.10 0.00 0.0438 0.0182 0.0028 0.0757 0.0475 

1.00 0.00 0.00 0.0480 0.0058 0.0031 0.0761 0.0485 

Table E12: Portfolios of Three Assets, Large FPTs 
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Ultimately the three dimensions are generated in Table E13 according to (3.25). 

All 𝐸[𝜏𝑚 ∧ 𝑇] values coincide with 𝑇. 

 

YUMA IMUX SVRA 𝑚 𝐸[𝑅𝑝] 𝐸[𝜏𝑚 ∧ 𝑇] 

0.00 0.00 1.00 -0.0542 0.4438 30 

0.00 0.10 0.90 -0.0654 0.6299 30 

0.00 0.20 0.80 -0.1043 0.8109 30 

0.00 0.30 0.70 -0.1516 0.9868 30 

0.00 0.40 0.60 -0.2018 1.1575 30 

0.00 0.50 0.50 -0.2532 1.3231 30 

0.00 0.60 0.40 -0.3053 1.4835 30 

0.00 0.70 0.30 -0.3577 1.6388 30 

0.00 0.80 0.20 -0.4104 1.7890 30 

0.00 0.90 0.10 -0.4632 1.9340 30 

0.00 1.00 0.00 -0.5162 2.0739 30 

0.10 0.00 0.90 -0.0610 0.6315 30 

0.10 0.10 0.80 -0.0711 0.8156 30 

0.10 0.20 0.70 -0.1071 0.9945 30 

0.10 0.30 0.60 -0.1526 1.1684 30 

0.10 0.40 0.50 -0.2017 1.3370 30 

0.10 0.50 0.40 -0.2524 1.5006 30 

0.10 0.60 0.30 -0.3040 1.6590 30 

0.10 0.70 0.20 -0.3560 1.8122 30 

0.10 0.80 0.10 -0.4084 1.9604 30 

0.10 0.90 0.00 -0.4610 2.1033 30 

0.20 0.00 0.80 -0.0780 0.8184 30 

Table E13: Three Dimensions for Three Asset Portfolios, Large FPTs 
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YUMA IMUX SVRA 𝑚 𝐸[𝑅𝑝] 𝐸[𝜏𝑚 ∧ 𝑇] 

0.20 0.10 0.70 -0.0860 1.0004 30 

0.20 0.20 0.60 -0.1171 1.1773 30 

0.20 0.30 0.50 -0.1591 1.3491 30 

0.20 0.40 0.40 -0.2060 1.5157 30 

0.20 0.50 0.30 -0.2552 1.6772 30 

0.20 0.60 0.20 -0.3057 1.8336 30 

0.20 0.70 0.10 -0.3570 1.9848 30 

0.20 0.80 0.00 -0.4087 2.1309 30 

0.30 0.00 0.70 -0.0999 1.0044 30 

0.30 0.10 0.60 -0.1060 1.1844 30 

0.30 0.20 0.50 -0.1324 1.3593 30 

0.30 0.30 0.40 -0.1703 1.5290 30 

0.30 0.40 0.30 -0.2142 1.6936 30 

0.30 0.50 0.20 -0.2614 1.8531 30 

0.30 0.60 0.10 -0.3103 2.0074 30 

0.30 0.70 0.00 -0.3605 2.1566 30 

0.40 0.00 0.60 -0.1243 1.1897 30 

0.40 0.10 0.50 -0.1289 1.3676 30 

0.40 0.20 0.40 -0.1512 1.5405 30 

0.40 0.30 0.30 -0.1851 1.7082 30 

0.40 0.40 0.20 -0.2259 1.8707 30 

Table E13: Three Dimensions for Three Asset Portfolios, Large FPTs 
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YUMA IMUX SVRA 𝑚 𝐸[𝑅𝑝] 𝐸[𝜏𝑚 ∧ 𝑇] 

0.40 0.50 0.10 -0.2706 2.0281 30 

0.40 0.60 0.00 -0.3177 2.1804 30 

0.50 0.00 0.50 -0.1499 1.3741 30 

0.50 0.10 0.40 -0.1534 1.5500 30 

0.50 0.20 0.30 -0.1725 1.7208 30 

0.50 0.30 0.20 -0.2028 1.8865 30 

0.50 0.40 0.10 -0.2402 2.0470 30 

0.50 0.50 0.00 -0.2824 0.2024 30 

0.60 0.00 0.40 -0.1762 1.5577 30 

0.60 0.10 0.30 -0.1789 1.7316 30 

0.60 0.20 0.20 -0.1954 1.9004 30 

0.60 0.30 0.10 -0.2225 2.0640 30 

0.60 0.40 0.00 -0.2570 2.2225 30 

0.70 0.00 0.30 -0.2031 1.7405 30 

0.70 0.10 0.20 -0.2051 1.9124 30 

0.70 0.20 0.10 -0.2195 2.0791 30 

0.70 0.30 0.00 -0.2438 2.2407 30 

0.80 0.00 0.20 -0.2302 1.9226 30 

0.80 0.10 0.10 -0.2318 2.0924 30 

0.80 0.20 0.00 -0.2444 2.2570 30 

0.90 0.00 0.10 -0.2576 2.1037 30 

0.90 0.10 0.00 -0.2587 2.2715 30 

1.00 0.00 0.00 -0.2851 2.2841 30 

Table E13: Three Dimensions for Three Asset Portfolios, Large FPTs 

 

The values of 𝐸[𝜏𝑚 ∧ 𝑇] for all weights in Tables E13 are equal to the investment 

horizon T. So the expected bounded first passage time component in (3.25) can be 

dropped and efficient surface can be replaced by the efficient frontier in two 

dimensions. 


