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Effects of Bilateral Tariffs on Currency Exchange Rate and
Characterization of Efficient Portfolios

Executive Summary

Currency exchange rate is one of the important factors determining a nation’s
overall economic health. In a free trade environment, its value depends on multiple
variables, many of which are beyond the control of a government. Having a precise
prediction of an equilibrium exchange rate helps governments and firms arrange
their economic plans safely. Furthermore, economic agents managing portfolios
consisting of currency pairs are constantly in need of predicting the exchange rate
value. There have been numerous attempts to model the equilibrium based on
various factors. We put our attention on a model where the governments of nations
involved in a free trade have a control variable to influence the value of the
exchange rate. However, the values of these control variables have to be chosen
based on maximization of benefit from trade. In addition, once the equilibrium
currency exchange rate is determined, for one managing a portfolio with the
currency pairs in it, having the values of the rates determined is of great

importance.

In order to address the above mentioned problems, this thesis is divided in two
main parts. The first part deals with game theory and exploration of gain
maximization problem of two nations engaging in non-cooperative bilateral trade.
We examine the probabilistic model of an exchange of commodities under
different price systems. Assuming the probability distributions of volumes of
commodities exchanged and their selling prices in both markets are known, we
arrive at currency demand functions for each nation, whose shapes ultimately

determine the edge one nation has over another in terms of trading.

Volume of commodities exchanged determines the demand each nation has over
the counterparty’s currency. However, this quantity can be manipulated by

imposing a tariff on imported commodities. As long as the gain from trade is

11



determined by the balance between imported and exported commodities, such a
scenario results in a two party game where Nash equilibrium tariffs are determined
for various foreign currency demand functions and ultimately, the exchange rate

based on optimal tariffs is obtained.

Nations involved in exchange of commodities differ according to the currency
demand functions. A special case when both nations have identical currency
demand functions was considered in [15]. Such nations are referred to as
economically symmetric ones. The main novelty of our approach is to extend the
model into a more general, asymmetric case where two nations involved in non-

cooperative bilateral trade have different currency demand functions.

In addition, we consider a model from [12], where the gain from trade is based on
completely different components and obtain the Nash equilibrium pair of tariffs.
In order to illustrate the effect of currency exchange rate on the equilibrium point,
we improve the model by introducing the currency exchange rate and determine

its optimal value based on the optimal tariffs.

The thesis lays down the theoretical groundwork for arriving at optimal solutions
regardless of the shapes of demand functions. Findings and solutions provided
throughout the text are primarily given based on abstract functions following
predefined economic patterns. From the practical point of view, these functions
would have been derived from probability distributions of the prices and quantities
of commodities. Since our task is to analyze the equilibrium point given the

currency demand functions, we take some examples of functions as granted.

Lastly, the sufficient conditions are defined for a solution to be the Nash
equilibrium point. These conditions are then applied to the special cases of
currency demand functions related to economically symmetric and asymmetric
nations. For the asymmetric case we also consider different versions of the
currency demand functions to emphasize the importance of their shapes and

illustrate the dynamic effects of shifting the functions on the equilibrium point.
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As long as the exchange rate has been examined, the second part of the thesis
explores the selection of optimal portfolio of foreign currency pairs by replacing
the standard Mean-Variance model by Mean-Minimum Return Level (MRL)
framework and adding one important dimension — expectation of bounded First
Passage Time (FPT) towards the MRL. To measure how much a given portfolio is
exposed to risk, the new model can capture both, the amount of the largest possible
loss at a certain confidence level and time to such an event occurring. The novelty
of this approach is the introduction of bounded first passage time towards MRL and
taking its expectation into consideration as an additional factor in portfolio
selection decision making. Assuming that the asset price dynamics follow multi-
dimensional Geometric Brownian Motion with drift, we obtain a portfolio wealth
process for multiple assets and we evaluate the lowest possible value to which it
can drop by a high confidence level. Then we extend our examination of the
optimal portfolio selection by ultimately obtaining the efficient surface of risky
portfolios. As a result, we show that the third dimension can make a significant
difference while choosing the asset weights compared to classical models ignoring
the portfolio return paths as long as they achieve a desired combination of risk and

return.

We focus on the portfolio of foreign currency pairs for our purposes, however the
model is more general in nature and can easily be applied to portfolios of any assets.
We observe the asset price movements in dynamics and decide on the investment
plan based on the predefined investment horizon. The model can be thought of as
a generalization of a Markowitz [18] model where optimal portfolios are selected
based on average return and corresponding variance. From the practical point of
view, the three dimensional model we offer gives a more reasonable safety measure

and a risk-return combination.

As a result, the thesis offers a comprehensive review of investment plan stretching
from economic problem of trade gain maximization to portfolio optimization. Both

models are applicable on their own. Especially the three dimensional portfolio

13



model which does not necessarily consist of currency pairs, rather it can include a
mix of any trading instruments whose spot prices are dynamically observable. The
thesis ends with some examples of portfolios consisting of stocks and ETF

(Exchange Traded Funds).
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Introduction

Due to different circumstances of production, two nations can produce similar
goods and services at different prices. They can both benefit by getting involved in
international trade to import commodities, which under their own price system is
of relatively low price than domestically produced commodities, which under the
same price system is of relatively high price. The volume of commodities imported
determines one nation’s demand for another nation’s currency. Balance of demands

of two nations for foreign currency determines an exchange rate.

Gain functions for both nations are made up of the foreign currency demand
functions. The foreign currency demand itself for a given nation depends on the
volume of commodities imported. A government can affect this quantity by
imposing a tariff on imports, thus making it less desirable to buy commodity from
another nation’s market. For the domestic and foreign nations, annual demand and
corresponding prices measured in national currency are di,I,dy,p1,I,py and
di, I, dy,p1, 1, py respectively. If we take x as an exchange rate of a unit of foreign
currency in terms of domestic currency units, then the domestic and foreign

nations’ demand for foreign currency are given by

N
1 = . Pk

D(x) =— ) E(prdix,— > x)
Cy e Pk

and

N
* . 1 T * pk
D*(x) == ) E(prdy,— <x)
Cy =] P
respectively, where Cy =YN_;E(ppdy), Cy =281 E(prd;) and E is the
mathematical expectation under P on a probability space (Q, F, P). If we introduce

the extended probability space (), F, P), where

Q=0x{1,...,N},P(A, k) == P(A),AeF

1
N

15



and define random variables p, p*,d, d" by

p(w, k) = pp(w),p"(w, k) = pp(w),

d((l), k) = dk(a))’d*(w’ k) = dl*((w)’

then the demand functions above can be rewritten as probability distribution

functions

D(x)=E (p*d,% > x), D*'(x) =E (pd*,% < x)

which indicate that the domestic nation will import the commodity if ﬁ > x and
the foreign nation will import if % < x. Since x is the value of an unit of foreign

currency in terms of the domestic currency units, increasing the exchange rate
makes foreign commodities more expensive for the domestic nation and the
domestic commodities less expensive for the foreign nation. Therefore, D is a
decreasing function of x and D" is an increasing function of x. These functions

have the following properties

D(0)=1, D(x®)=0, D*(0)=0, D*(x)=1.

For an exchange rate x, solving the equation

xD(x) = D*(x)

for x, yields the equilibrium rate x = e.

This equation determines the equilibrium exchange rate when both nations
practice an unrestricted free trade policy. Left side of the equation is the foreign
currency demand of a domestic nation and the right side is the foreign currency

demand of a foreign nation, both measured in domestic currency units.

Now suppose the domestic and foreign governments impose the following tariffs

on imported commodities: 1 — 6 and 1 — 6*. Then the domestic nation will import

p*e*
Y4

the commodity if Z—* > x, and the foreign nation will import if > % Taking

tariffs into account, the demand functions defined above now become
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and so the equilibrium exchange rate adjusted for the tariffs is now determined
from

X

XD(B

) = D*(6"x),

from which it is clear that the equilibrium exchange rate x = e now depends on 8
and 6*. At the same time, according to the Schwartz’s [15] model which we
develop, gain from competitive trade consists of two components — imported and
exported commodities measured in national currency. The gain from trade

functions for each nation are defined as follows

p* 0 p* 1
G ’9’ * =E< ) _)_E( *’_ >
(e,6,0%) pdp<e pd p>e0*

p
~E(Z1p )~ E(part e
p 5" P

= —J yD'(y)dy — D*(6%e),
e/l

and
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The idea behind imports regarded as beneficial for a nation is that it has an
incentive to buy commodities from the foreign market only if it costs them less
than it would by buying in the domestic market. And the second component,
export is regarded as gain deductible quantity since it benefits the competitor by

the same argument.

It is important to realize that within this model, the components of trade gain
function involve the commodities exchanged only. So the idea of gain is narrowed
down to the advantages competitors take from trade and is not extended
throughout the whole economies of two nations. For example, we do not claim that
import is necessarily beneficial and export is harming. What we claim is, that
import is an advantage taken from the competitor and the export is an advantage
taken by the competitor. So this import-export phenomena is considered
autonomously only within the trade context without further impact analysis over

various parts of economies.

The nations involved in non-cooperative trade are facing the dilemma of how
much tariff to impose on imports. Greater the tariff, lower the commodities
imported, it hurts the nation’s gain, and benefits the competitor’s one. From the
gain functions, it is obvious that the greatest mutual benefit is achieved when
nations cooperate and pursue a free trade policy. We confine ourselves to non-
cooperative case and find the pair of optimal tariffs (equilibrium point) which

maximizes the gain for both nations.

In the first part, in addition to defining the currency demand functions and
illustrating the relation between them based on the currency exchange rate, we
also provide a general solution to the gain maximization game and find the Nash

equilibrium point for both nations. It is the solution to the system of equations

éD (g) = D*(6 &),

o(£)-0a- 0050
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We also provide the sufficient conditions for the solution to be the Nash

equilibrium point
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N
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D,

Next we provide definitions for economically symmetric and asymmetric nations
based on [15]. Within this part we provide some special cases of functions and find
the equilibrium points for those functions. Namely, we solve the trade gain

maximization problem for the following symmetric cases: D(x) = D* (i) =

(1+x)"?and D(x) = D* G) = (1 — ax)*, a < 1. More importantly, we consider
an asymmetric case based on D(x) = exp(—dx),D*(x) = (axexp(ﬁx)) A 1. Here
we also illustrate the effect of changing the foreign currency demand functions on

the equilibrium point.

Later we review an additional model from [12]. Within this model, we solve a
similar problem of trade gain maximization where it depends on completely
different parameters compared to the first model. Namely, the gain function
consists of the consumer surplus, profits made by the local firms from selling
commodities in domestic and foreign markets and the tariff revenue collected by

the governments from imports

1
Wt t*h,f,h* f*) = EQZ + 7w (t, t5 h, f,h* f*) + tf*

1
W*(t, t*, h, f,h* f*) = EQ*2 + 1t (t, t5h f, R )+ t°f

Where Q = h+ f and Q" = h* + f* are the quantities of commodities produced
computed as sums of production for the domestic and foreign markets. ¢t and t*

denote the tariffs. And the profit made by the firms are defined as
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Here, the firms produce commodities for domestic and foreign markets. Within

this part, we also provide a generalized model by introducing the currency
exchange rate as e = %, which redefines the firm profit and gain functions of the

foreign nation as
n*(t,t h f,h", f")=e(a—h"—f)h" +e(a—h—f*)f" —etf”
and

1
quﬁmjnmfﬂ=§e@3+n%aﬂmjnﬂfﬂ+eﬁ*

and find the Nash equilibrium values for production to be

- a—f"

h=——,

., a+t”

h=——

. a-—2t"

f=—7—
o _a—h—t+Jla—h-02+3(a—h"—f)h
3 :

Unlike the first model, here the currency exchange rate is not taken as a function
of tariffs. Lastly, the proofs of some solutions are provided in appendixes

accompanying the work.

Game theory has long been used and is still a widely used tool for problems of
competition. Approaches vary depending on the nature of the problem. The
outcome of the optimization is the best possible solution for both nations taking
into consideration the potential response from another nation. Actions these
nations can take are setting tariffs on imported commodities in response to each
other. This situation is sometimes referred to as “trade war”. The timing of the game
in both models is as follows. Both nations trade the quantities based on the
necessities they have. Since they do not cooperate, one nation unilaterally sets a

tariff on imports and affects the imported quantities of commodities. So this either
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drops or raises the gain from trade depending on the tariff rate. In response, the
second nation chooses a tariff rate that does the same for itself, however the Nash
equilibrium pair of tariffs if respected, ensures that they get the most benefit out of

the trade.

There are certain assumptions behind the models. Both models assume that the
availability of imports does not change regardless of the imposed tariffs.
Furthermore, we assume that the prices are not affected by the changed demand.
In both cases, the economic intuition would suggest the opposite. Besides that,
there are numerous specific mathematical assumptions provided throughout the

text.

The novelty of the approach examined in this thesis is to make the commodities
and their prices random and solve the gain maximization problem under the Nash’s
sense. Greatest mutual benefit is achieved when nations cooperate and pursue a
free trade policy. However, here we assume the non-cooperative game, so they

determine the optimal tariffs which results in greatest benefit for both parties.

The second part of the paper explores the portfolio optimization in three
dimensional framework. Portfolio selection theories have gone through various
improvements since the introduction of its most prominent theory by Harry
Markowitz [18] in 1952. He was first to introduce the risk-return principle with
the well-known Mean-Variance framework. The basic idea is to arrive at an
efficient frontier curve of risky assets by minimizing volatility for given expected
returns. It is shown that taking more than one risky position can eliminate some
portion of risk as an investor realizes the effect of diversification. Volatility as a risk
measure is ideal when portfolio returns are normally distributed. However, when
dealing with asymmetric distributions, it simply leads to misinterpretation of risk.
Furthermore, in most of the cases, especially during abnormal economic states,
history shows that markets do not follow the logic of normal distribution.
Measuring risk by volatility penalizes losses equally to profits of the same
magnitude. However, investors are more concerned with a downside risk rather
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than simple volatility so that they are aware of the worst-case scenario that can be
realized with a high degree of confidence. In addition, while aiming to select less
correlated assets is a rational approach, there are some downsides we focus on.
Slight change in correlation can cause significant change in MRL. At the same time,
one may allocate funds into assets in proportions, which while being optimal in
Mean-Variance sense, can cause hitting the MRL level faster by having overlooked
one important factor — expected time of the portfolio return process towards the
minimum level. This may be a source of severe problems for investors who are
exposed to margin calls or need to raise funds in a short period of time if such an
event is realized. To account for the problem of measuring downside risk rather
than simple dispersion, Value at Risk (VaR) is used. VaR is a worst loss that can
occur with a high confidence level. While this approach is a step to the right
direction when it comes to assessing worst possible risk that can be realized, it still
lacks one important factor — expected time when the returns hit the lowest possible
value at some confidence level. This is critically important for portfolios exposed
to mark to marketing or margin calls. Adding this third dimension makes most of
its sense when the portfolio volatility is large enough to cause the expected hitting
time move before the investment horizon. In this scenario, one can differentiate
portfolios by taking into account the expectation of hitting time bounded by the
investment length. In case when portfolio variance is sufficiently low, the
expectation of bounded hitting time coincides with the investment horizon and
becomes an ignorable factor and an investor can stay within the two-dimensional
Mean-MRL framework. Lack of historical data or the complexity of parameter

estimation sometimes forces investors to apply non-parametric methods.

Our aim is to construct a model which delivers the best performance in the sense
that safety is taken as a priority. In order to concentrate on the contribution of the
paper, we use Minimum Return Level as a risk measure instead of VaR or ETL
(Expected Tail Loss). Once having MRLs and portfolio expected returns computed

for different sets of asset weights, we extend the framework by introducing
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expected first passage time bounded by investment horizon as a third dimension
used for decision making. This is done by computing the expectation of the
minimum between the investment horizon and the first passage time of portfolio
return process towards the minimum level. Once all three quantities for a given set
of portfolio weights are in place, we define the best combination of them by
maximizing MRL and the expected bounded first passage time for a given expected
return of a portfolio. The ultimate result is the efficient surface of risky portfolios.
This can be regarded as the three-dimensional analogue of the efficient frontier in
classical Mean-Variance model. As a comparison to the Mean-Variance model,
while this model might suggest holding a certain weights in assets allocated within
a given portfolio, the Mean-MRL-FPT model may reject it altogether and find a set
of weights which outperforms in 3-dimensional sense. In addition, it is quite
possible that the optimal portfolio weights found by the Mean-Variance
framework produces a negative drift which is avoided by the Mean-MRL-FTP
model. In a highly volatile environment, portfolio of assets selected by the Mean-
Variance framework will hit the lowest possible return level earlier than the
portfolio selected by Mean-MRL-FTP framework and at the same time, the latter
includes the risk measured by variance as it is reflected in computation of MRL. So,
there is a double benefit from applying MRL and FTP when the available assets are

volatile enough.

This chapter is structured in four main sections. The first section examines the
differential equations which represent the multi-dimensional Ito’s processes and
constructs the portfolio wealth process. In particular, we take n — dimensional Ito’s
process which is a vector of asset prices S* = (S§%,...,8™)T driven by n -
dimensional Brownian Motion B = (BY,...,B™)T, where B! = (B, t > 0) be the

real valued Brownian Motion which starts from 0 on(Q, F, P):

dst = Si(utdt + c'*dB} + -+ + c*dB})
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where ui is the drift coefficient and ¢/, j=1,...,nis an element from the row
vector ('1,...,0'™). Then we define the portfolio wealth process V; corresponding

to self-financing portfolio to follow the differential equation:

dV, = 0}dSt + -+ 01dS!
where Htj denotes the weight of j'™ asset within the portfolio. Ultimately, we

obtain the portfolio wealth process to be driven by the Brownian motion as follows

V. = V(0) exp(jit + & B,).
Within this section, it is shown that in order for the portfolio wealth to drop to its
minimum level, the Geometric Brownian Motion that determines the portfolio
wealth must reach the level which we call the Minimum Return Level. This brings
us to the next, second section where the MRL is formally defined as a quantile from
the probability distribution function of portfolio rates of returns as follows
m=F(a)
with F a probability distribution function of portfolio rates of returns and 1 — a as
a confidence level. The third section overviews the third dimension of the model
— expected bounded First Passage Time towards MRL. This value consists of two
parts — the term involving the probability density function and the cumulative
probability function of the First Passage Time
T
Elt,, AT] = fo tfr, (O)dt + T[1 — P(t,,, < T)]
where 7,, is a first passage time of V; to the level m, T is the investment horizon
and f is the normal probability density function. The final part, section four deals
with the model construction. It combines all the three dimensions and obtains the
efficient surface of risky portfolios.
Finally, the last sections provide examples of optimal portfolios consisting of two
and multiple assets respectively. In particular we review a portfolio consisting of
two assets whose prices are observed in dynamics and construct the set of portfolios
based on the three dimensional model described above. Later we add a multi-asset
portfolio (consisting of four assets) and solve the similar problem inn three
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dimensional framework and as a comparison we include portfolios from mean-
variance framework. In this model the portfolios have expected bounded first
passage times all set within the investment horizon. Later we examine an example
of a portfolio consisting of three assets whose expected bounded first passage times
are equal to the investment horizon. So the portfolios are almost never expected to
reach the minimum return level with a high confidence level. In this case, the third
dimension can be dropped altogether and switch to the Mean-Variance or Mean-
MRL framework. This effect is illustrated on the efficient frontier from the Mean-
Variance framework. Numerical techniques are used in computation of the third
dimension for portfolios. As a final note, all the examples examined at the end of
the thesis are included in the accompanying spreadsheets. Computations are

examined in details throughout the text.
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Literature Review

Game theory is a discipline studying an interaction of decision makers assuming
their rationality. The theory was introduced as a completely new interdisciplinary
research by Neumann and Morgenstern [1], [2]. This paper set the philosophical
foundation and the mathematical model in combination. Particularly, the paper
was motivated by the idea of two-person zero-sum game. The game is called zero-
sum if the utility gain of one player is completely eliminated by the utility loss of
another. So the participants’ wins and losses cancel out each other. The theory was
initially applicable in only a few disciplines. Later on, the theory went through the
development phase by the original authors as well as many others. Currently there
are countless applications of the theory in many disciplines. Namely, the theory is
widely applicable in economics, biology, logic and many areas of social and

computer sciences.

The decisive development of the theory was a very short paper by Nash [3] in 1950.
This paper defined an approach to arrive at an optimal point for competitors at the
strategic decision making process. Nash found out that the maximum mutual
benefit in a game is attained when the participants cooperate. Furthermore, he
concluded that acting based on the selfish interest, leads to an optimal solution

commonly referred to as the Nash equilibrium.

Nash [4] developed the model he originally initiated by introducing the bargaining
problem in a game. This model still considers two players and deals with sharing
the surplus they jointly generate. Nash introduced uncertainty about the utilities
attained by each player based on their decisions. They still do not cooperate and
make rational decisions. However they might be unaware of the utilities which are
feasible following their actions. He claimed that even in this situation, the decisions
made by the players again lead to a unique solution known as the bargaining
equilibrium. In addition, the model is clearly formulated and axiomatized in the
sense that, the conditions are set which have to be satisfied by the solution of the

game.
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In 1951, Nash [5] developed an idea of two person zero sum game which can be
regarded as a generalization of a model introduced by Neumann and Morgenstern
described above. This model deals with a scenario where two persons do not
cooperate and make rational decisions according to the anticipated utilities they

have.

Nash [6] explores the bargaining problem in a more generalized form. In particular,
this paper considers a model which is an extension of [4]. However this model
assumes that the players do not have opposing plans or aims, neither they have
coinciding ones. Furthermore, according to the model, they can agree upon a
strategy to mutually attain a solution they both benefit from. Thus the paper is

entitled as cooperative game.

Merrill Flood and Melvin Dresher formulated a Prisoner’s Dilemma in 1950. This
is a hypothetical experiment considering two participants of the game acting purely
based on selfish interests which do not lead to mutually optimal outcome. The idea
behind this scenario is that cooperation leads to a greater utility received by both
participants than the one obtained by pursuing purely self-interests ignoring the

interests of the competitor.

Our interests rely on the prisoner’s dilemma type of game, where two players do
not cooperate and make decisions unilaterally without knowing what decision is
made by the competitor. In this type of game, it is obvious that the best mutual
benefit would be achieved in case of cooperation, however since the players are
not able to communicate, they make decisions based on their individual expected
benefits. This type of game is of our primary interest since we only consider a game

with competitors not cooperating and not pursuing a free trade policy.

In 1973, Smith and Price [7] made an important application of [8] and defined the
mathematical concept for the evolutionary game theory (EGT). The theory is based
on the biological context and can be thought of as an application of classical game

theory to evolving populations in biology. It had a very limited application initially.
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The main idea behind the EGT is the strategies of participants constantly evolving
based on the interaction in dynamics. The model uses the Markov chains for
switching strategies from states to states. The main difference between EGT and
the classical game theory is that, the EGT is more concerned about the dynamics
of strategy change which itself is largely affected by the frequency of competing
strategies in the population. Within the EGT, the participants do not necessarily
have rational strategies. They are only required to have at least some strategy. The
goodness of the strategy is ultimately checked based on the alternative strategies
making the original one either vulnerable or capable to survive, reproduce and

evolve.

The seminal work of Smith [9] was published in 1982 followed by Axelrod’s book
[10] in 1984. Plenty of material from these two books were later on reflected in
many works related to the game theory applications in economics and social
sciences. In the modern world, the classical and evolutionary game theories are
parts of behavioral economics and other fields where the phenomena of rational

decision based non cooperative interactions are involved.

McMillan [11] focuses on business and economics related applications of game

theory. Here one can find strategies for rational decision maker managers.

Scientists have studied the trade gain maximization problem from different
perspectives. R. Gibbons [12] considered a game model in which total welfare of a
country consists of an economic surplus enjoyed by consumers, profit earned by
firms within a given country and the tariff revenue collected from the imports.
Maximization of the total welfare from trade leads to optimal tariff countries

involved in trade should impose.

In [13], a closed economy model is considered in which the country consists of a
fixed number of households having preferences as a function of consumption and
leisure. Within this model, consumption goods consist of intermediate goods that

can be produced by units of labor. Under the closed economy model, quantities of
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each intermediate good and the tariff a given country imposes on imports are

optimized.

The model is then extended to a two country model in which there are large and
small countries. Large country consists of many consumers while the small country
has only one household. Since technologies of production differ across countries,
each has different production capacity based on which they obtain relative price
levels for the intermediate goods. The difference in relative prices implies the gain

from trade.

Ricardian model [14] of two countries under free trade assumes that the large and
the small countries get involved in trade. The large country can meet the demands
for a specific intermediate good at a relative price of another intermediate good.
Therefore, the small country specializes in the production of such a good. The small

country can benefit from trade while the large country has nothing to gain.

The Ricardian model is extended by assuming that the large country imposes a
tariff on imported goods. Now it can also benefit from trade. So the small country
exports the goods and pays the specified tariff, after which it purchases the
intermediate good from the large country. The large country has to optimize the

tariff.

J. T. Schwartz [15] considered a model of trade gain maximization where the
commodities produced and the prices for those commodities are static. In addition,
gain from trade is determined to be the difference between the values of imported
and exported commodities measured in national currency. Since importing those
commodities which cost less under the national price system is regarded as a benefit
for both nations, gain from competitive trade for a given nation is considered to be
the difference between the advantage it took over the competitor and the
advantage the competitor took over it, thus the difference between imports and
exports measured at national currency. The Schwartz’s model solves the tariff

optimization problem for two nations which are said to be economically
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symmetric, meaning they have equal demands for each other’s currency under a
given exchange rate. Additionally, Schwartz considers a special scenario where the
currency exchange rate is fixed by one nation’s central bank in order to fulfill some

economic purposes.

In [17], tariff optimization problem is examined based on maximization of gain
function. Two nations involved in non-cooperative trade game is examined and the
Nash equilibrium triple of values are obtained. Namely tariffs imposed by each
nation on imports of a competitor and currency exchange rate. System of equations
solving the trade gain maximization problem is clearly formulated based on
abstract foreign currency demand functions for each nation and the ultimate results

are illustrated with special examples of these functions.

Within the paper, gain functions for each nation involved in non-cooperative trade
are defined. For these functions, the maximization problem is solved under Nash’s
sense. Next, the exchange rate is defined as a solution to an equation matching the
foreign currency demand functions. This leads to the system of equations involving
a pair of foreign currency demand functions which play a key role in determining
the strength and economic power of a given nation relative to its competitor.
Additionally, the paper defines a notion of symmetry of economies and offers
special cases of the pairs of foreign currency demand functions by which the trade
gain maximization problem is solved. The functions correspond to symmetric and

asymmetric cases SEP&I’&tEly.

Obviously, there are many more models and ideas regarding the definitions of gain
from trade and what components should it include. Some of the components are
qualitative in nature, like leisure or units of labor measured in qualitative means.
Basically, all trade scenario can be transformed as a game as long as there is a strictly
defined trade gain function and some control variables like a tariff imposed on
imported commodities, by manipulating which, benefits from gain is changing for

each player.
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Portfolio theory began with the development of ideas which were mostly
qualitative in nature. In the beginning of 20% century investors used to mostly put
their attention to some qualitative measures of performance. While this approach
overlooked may important factors widely known today, it was one of rare options
available in the science field by those times. Some of the qualitative measures are

still commonly used today.

One of the first attempts to quantify the factors influencing the portfolio
performance was introduced by Williams [16] in 1938. In that time, information
flow about stocks was too slow and investors simply used to bet on the prices which
they thought were at their best. Williams captured time as an important variable
to introduce in portfolio construction process. He focused on dividend discount

model.

It was until 1952 years that this model was one of the rare quantitative options
investors had. In 1952, Harry Markowitz [18] proposed an important idea of
portfolio selection, later named as modern portfolio theory. Within this model,
risk-return combination is clearly illustrated by the use of quantitative variables
only — expected return and variance. This model illuminates the idea of
diversification and explains the benefits of holding multiple assets having the same
expected return but low correlation. So holding multiple risky assets can eliminate
the portion of risk which would be impossible by holding a single asset with the
equivalent return. The concept of efficient frontier of risky assets played a
significant role in understanding the combination of risk and return. This paper

gave rise to the completely new field now known as quantitative finance.

In [19] an efficient diversification scheme is examined. Importance of negatively
correlated asset returns is outlined in a portfolio consisting of large number of
securities. The effect of correlations on overall portfolio risk measured by variance

is illustrated and the benefits of dividing up an investment are shown.
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Later developments of the model were seen as the Capital Asset Pricing Model
developed by several economists independently. Most prominent of those is
Sharpe’s paper [20]. Here he proposes a model of market equilibrium taking the
risk measured by volatility into account. Introduction of beta was a valuable tool
for capturing the relation of an individual asset’s risk to the market. Later on, beta
found its applications in many other academic researches, most notable of which
are the theories related to risk measured as Value at Risk which we later apply. The
model can be thought of as an important extension of the Markowitz theory.
Although beta is a measure estimating the linear relation of an individual asset’s
sensitivity to the market, there arose a need for downside risk measure interpreting
a risk as a threat to lose. Put another way, risk should have been regarded as a
possibility that the returns drop to a certain threshold level making the portfolio

(or an individual asset) lose its value.

Portfolio optimization approach with Mean-Minimum Return Level (MRL) —
Expected Bounded First Passage Time Framework (FPT) is introduced in [21]. The
paper begins with motivation under introducing the FPT as a third dimension for
optimal portfolios. The three dimensional model examined within this paper takes
the investment horizon into account and computes FPT accordingly. Ultimately,
the efficient surface of risky portfolios is obtained. The aim is to construct a model
which delivers the best performance in the sense that safety is taken as a priority.
In order to concentrate on the contribution of the paper, MRL is taken as a
downside risk measure which replaces standard dispersion measures. Once having
MRLs and portfolio expected returns computed for different sets of asset weights,
the framework is extended by introducing expected First Passage Time bounded
by investment horizon as a third dimension used for decision making. This is done
by computing the expectation of the minimum between the investment horizon
and the First Passage Time of portfolio return process towards the minimum level.
Once all three quantities for a given set of portfolio weights are in place, the best

combination of them is defined by maximizing MRL and the expected bounded
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first passage time for a given expected return of a portfolio. The ultimate result is
an efficient surface of risky portfolios. This can be regarded as the three-

dimensional counterpart to efficient frontier in classical Mean-Variance model.

The paper is structured in four main parts. The second section examines the
differential equations which represent the multi-dimensional Ito’s processes and
constructs the portfolio process. Within this section, it is shown that in order for
the portfolio wealth to drop to its minimum level, the Geometric Brownian Motion
that determines the portfolio wealth must reach the level which we call the
Minimum Return Level. This brings us to the next, third section. In this section
the MRL is formally defined according to its probability function. The fourth
section overviews the third dimension of the model—expected bounded First
Passage Time towards MRL. This value consists of two parts—the probability
density function and the cumulative probability function of the First Passage Time.
The final part, section five deals with the model construction. It combines all three

dimensions and obtains an efficient surface of risky portfolios.

On a final note, as far as applicability of the model is concerned, it is obviously
impossible to continuously rebalance the portfolio in order to maintain the
constant weights. However, one can adopt some discretization methodology to find
the optimal interval for making trades and taking transaction costs into account at

the same time.

Value at Risk (VaR) was introduced by JP Morgan in early 1990s. Since then, it has
become a major benchmark instrument in the hands of financial institutions and
regulators for measuring risk. Some theories appeared in the late 90s which
promoted application of VaR and MaxVaR in portfolio management. Bookstaber
[22] published a paper with some critical values about classical risk management.
In 2004, Boudoukh et al. [23] did research about computing long horizon VaR for
portfolios exposed to mark to marketing. In this paper it is shown that VaR is a very
useful measure of risk in a mark to market environment and the way to compute it
is explained. Basically, VaR is a statistical measure. Specifically, a quantile of losses
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at some confidence level indicating the highest possible loss that can be incurred
in the worst-case scenario. There have been numerous methodologies for
computing VaR in different circumstances. Expected Tail Loss (ETL, aka Expected
Shortfall), defined as the average loss beyond VaR is a coherent risk measure
according to Artzner et al. [24] and is widely used in risk calculation and portfolio
optimization problems. This paper provides a list of axioms a risk measure must
satisfy in order to be coherent. Classical Markowitz optimization technique was
translated into Mean-VaR (or Mean-ETL) framework and the usefulness of ETL
was examined by Rockafellar et al. [25], where volatility is replaced by VaR (or
ETL) and optimization is done based on minimization of VaR (or ETL) and

maximization of expected returns of portfolio.

As a result VaR played an important role in the development of probability based
risk models. Today, there are many works related to VaR computation
methodologies. VaR is computed based on parametric models as well as empirical
models. Popular methods for computing the portfolio VaR is a copula based
approach. Copula is a joint probability distribution function of uniformly
distributed random variables on a unit square. It has become a powerful tool for
simulation techniques. However it still exposes its weakness when it comes to
estimate the copula function for high dimensions. Parametric family of copula
functions called Archimedean copulas offers a wide range of functions with
different dependence structures. Theory of copulas is new and still an emerging

field. A good reference to a classic book is [26].

In [27], optimal portfolios with two assets are examined. Copula functions are
applied to model the dependence structure between returns of assets as random
variables. Portfolio with two assets are taken and an Archimedean copula is chosen
to fit the data. Copulas are used to jointly simulate the returns of the assets.
Ultimately different portfolios are obtained based on the Conditional Value at Risk

and expected return as a combination.

34



Value at Risk for regulators provides a tool for forcing financial institutions to
maintain a certain threshold capital idle in order to ensure safety. [28] is a good
reference exploring the application of VaR as a tool for measuring safe level of
Capital Requirement. This paper examines the portfolio policies adopted by
expected utility maximizing agents under Value at Risk Capital Requirement
regulation compared with exogenously imported VaR Limit and Limit Expected
Loss regulations. There is a trade-off between the threshold capital required to
maintain the solvency and health of a financial institution and the effective
management of capital. The results obtained makes the Basel regulations more
optimal and rational from the standpoint of regulators on the one hand, and

institutions on the other.

Despite the fact that Value at Risk is computationally simple and numerous models
developed so far give satisfactory results, Engle and Manganelli [29] proposed a
new estimation of a quantile level of future portfolio values conditioned on current
information named Conditional Value at Risk by Quantile Regression. This model
does not require assumption that portfolio returns are from some particular
distribution or they are independently and identically distributed. Within the
paper, portfolio risks are defined based on this new measure and the advantage of
the approach is supported by examples constructed by evolutionary generic
algorithms producing empirical evidence of this methodology being able to adapt

to new risk environment.

In [30], Engle and Manganelli extend [29] and show that the historical simulation
method which they provide is just a special case of CAViar framework. In addition,
they introduce the extreme value theory for CAViar and compute the expected loss
as a quantile level conditioned by the VaR level. So expected loss within the
CAViar framework is defined similarly as for ordinary VaR. The performance is

then checked by Monte Carlo simulation.

Statistical theory of extremes is used in [31] to justify it being more natural and
robust approach in risk management computations. Specifically, this paper deals
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with extreme tails and uses probability first as a measure of extremeness of events

and then to determine the proper threshold level for capital.

In [32], extreme stock price movements are presented. The author investigates the
economic booms and crashes followed by abnormal stock price movements. The
approach defined is supported by the example consuming data from the most
traded stocks on the New York Stock Exchange from 1885-1990. Finally, it is
shown empirically that returns of stocks in during extreme cases follow a Frechet

distribution.

Chen et al. [33] proposes the portfolio optimization problem based on semi variance
of uncertain variables. Within this model, the returns of assets are estimated based
on experts’ subjective views. Models like uncertain semi-variance have parameters
which are hard to quantify, but in uncertain situations subjective views are useful
or at least the only solution. Closely related idea to the uncertain semi- variance
model is the semi-absolute deviation model proposed by Qin et al [34]. Within this
paper, authors examine the portfolio selection by several mean-semi absolute
deviation adjusting models to measure tradeoff between risk and return. Views
about the asset returns are obtained from expert opinions like in semi-variance

model.

The concept of Brownian motion arose from an experiment by a British botanist,
Robert Brown in 1828 where he observed irregular movement of suspended pollen
grain in water. Water molecules cause motion of the pollen grain which is
described by the famous Brownian motion model, otherwise known as the Wiener
Process [35]. Wiener constructed the first mathematically rigorous description of

Brownian motion.

Levy [36], [37] is credited with the discoveries of important properties of Brownian

motion. Within these works, some quite non-intuitive properties are presented.

More of famous works dedicated to the topics described above are listed in the

bibliography for a convenient reference.
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Chapter 1 Equations for Nash-equilibrium tariffs and
exchange rate

1.1 Foreign Currency Demand Functions
This chapter deals with generalization of a model proposed by Schwartz [15]. Let

us assume two nations exchange N different commodities for which the demand
and prices are known. For the domestic and foreign nations, annual demand and
corresponding prices measured in national currency are d,...,dy,py,..., Py and
di,...,dy,pi, ..., Dy respectively. If we take x as an exchange rate of a unit of
foreign currency in terms of domestic currency units, then the domestic and
foreign nations’ demand for foreign currency are given by
1 e (1.1)
D) == ) E@idi s > x)
Cn = Pk
and
. 1 N B Dk (1.2)
D@ = ) E@idioos <)
Cn =] P
respectively, where Cy =Y¥_;E(ppdy), Cy =281 E(prd;) and E is the
mathematical expectation under P on a probability space (Q, F, P). If we introduce

the extended probability space (€}, F, P), where

P(A),AeF

=]~

and define random variables p,p*, d,d" by
p((,l), k) = Pk ((1)), p*(w, k) = p; ((1)),

d(w, k) =di(w),d"(w, k) = d*(w),

then (1.1), (1.2) demand functions above can be rewritten as probability

distribution functions

D(x) =E (p*d,ﬁ > x), D*(x) =E (pd*,§ < x) (1.3)
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which indicate that the domestic nation will import the commodity if % > x and
the foreign nation will import if ﬁ < x. Since x is the value of an unit of foreign

currency in terms of the domestic currency units, increasing the exchange rate
makes foreign commodities more expensive for the domestic nation and the
domestic commodities less expensive for the foreign nation. Therefore, D is a
decreasing function of x and D" is an increasing function of x. These functions

have the following properties

D(0)=1, D(x)=0, D*(0)=0, D*(c0)=1.

Currency Demand Functions

D(x)
09 r m— D*(x)

0.7 r 1

061 1

04 r .

03r 1

0.1} 1

Figure 1.1: D(x) and D*(x)
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Currency Demand Functions

D)

m— D*(1/x)
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0.7
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03

02

Figure 1.2: D(x) and D*(1/x)

From (1.1) and (1.2) it is clear that the foreign currency demand functions are
derived from the known probability distributions of prices and quantities of the
exchanged commodities. Our main interest lies in the shape of these functions, not
how they are obtained. So we mostly focus on the ready-made functions
themselves and introduce some special cases of them carrying intuitive economic
interpretations. From the practical perspective, one should obtain the functions
from the equations above. While it is true that the economic strength and
dominance of one nation over another is determined by these functions, as we will
see later, from these functions alone, it is impossible to anticipate which nation will

be able to impose a greater tariff over the competitor.

1.2 Introducing Currency Exchange Rate

For an exchange rate x, solving the equation

xD(x) = D*(x) (1.4)
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for x yields the equilibrium rate x = e.

0.35 Equilibrium Currency Exchange Rate

0.3

0.25

0.2

0.15

0.1

0.05

X

Figure 1.3: Solution to xD(x) = D*(x), D(x) and D*(x) are taken arbitrarily
This equation determines the equilibrium exchange rate when both nations
practice an unrestricted free trade policy. Left side of the equation is the foreign
currency demand of a domestic nation and the right side is the foreign currency
demand of a foreign nation, both measured in domestic currency units.

Now suppose the domestic and foreign governments impose the following tariffs

on imported commodities: 1 — 6 and 1 — 6*. Then the domestic nation will import
the commodity if z—f > x, and the foreign nation will import if % > % Taking

tariffs into account, the demand functions (1.3) now become

(5) _E@ i) L (x0%) = E(pd 1{g " x>p)
0 E(p'd) E(pds) '
where
1 N
E(p*d1{9p>xp*}) = NZ E (p;:’,dkl{epk>xp7(}) ’
k=1
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N

1 _
E(pd*]-{e*p*x>p}) = N Z E (pkd;;l{e*p;:gopk}) ’
k=1

*

C C
E(prd) =—, E(pd") =~

and the relation (1.4) is rewritten as
x

XD(H

)=D(6"x) (1.5)

from which it is clear that the equilibrium exchange rate x = e now depends on 6
and 6*. Equation (1.5) always has the solution e = 0, g =0,0r 8 = 6" = 0, which
do not carry any useful economic sense. Such conditions would restrict the
involvement of both nations in trade. To rule out these possibilities, we claim % <

<6< 1

s

e < M, for some large number M and % <6<1,

One important note here is that, although we defined the upper and lower bounds
for the tariffs that can be imposed by both nations, and the mathematics is fine
with any solution within that range, normally the numbers 8 and 8" are close to 1.
In realistic scenario, it is hard to find a number significantly less than one.
Regardless of that, we do not restrict ourselves to obtain numbers which are very
realistic. Our goal is to obtain numbers those fit well within the mathematical

restrictions and give a good meaning to the ultimate results as a whole.

1.3 Gain Functions

Since the ultimate goal of both nations is to set the tariffs unilaterally which will
maximize their gain from trade, we have to find the Nash equilibrium point, the

pair (8,8"). The gain functions of each nation are given by

*

6 1
p e p

*

ef*
ZE(El p._e p*d)—E(pd*l p._e )
p* (?5) (F>5)
= —f yD'(y)dy — D*(8%e),
e/0
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and

6(8,9,9)=E( d,—*<9€)—E( d,—*>—>
P p P p* 0
°1 /1 e
=1, 507 () av-0(3)

o7e

respectively. Since the equilibrium exchange rate is the function of tariffs, we have
e = e(0,0"). Our goal is to find the Nash equilibrium for the nations, i.e. such pair
(8,6). Our goal is to find the Nash equilibrium for the nations, i.e. such pair
(@, ] *) that relations

meax G(e(@, @*), 0, @*) = G(e(@, @*), 0, @*),

n}ggx G*(e(@, 0*), 0, 0*) = G*(e(é, @*), 0, @*)
hold. The Nash pair is found from the system of equations

0 o~ (1.8)
%G(e,B,B ) =0,

(1.9)

d
69*G (e,0,6") =0,

Given the currency demand functions D(x) and D*(x), solution to the system of

equations (1.8),(1.9) leads to yet another system of equations (see Appendix A)

D (g) = 0°(1-6)D"'(0%) (1.10)
D(%) 22(9*_1)D,(g) (1.11)

e

Remark: According to (1.5), D (5) = @. Then (1.10) can be rewritten as
D*(8*e) = ef*(1 —0)D*'(8%e) (1.12)

Denoting € = i, D(x) = D* G), (1.12) now becomes

—[ée e — (e

D|l—|==—@-1)D'|—

) -70-07(z)
which is similar to (1.11).

Note that 6 plays a role in the first component of (1.6) and the second component
of (1.7). At the first glance it seems that increasing the value of 6 (meaning
absorbing less portion from the value of imported commodities) causes the gain of
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the first nation to decrease and vice versa. Similarly, 6* participates in the second
component of (1.6) and the first component of (1.7). However, since the currency
exchange rate e is the function of 8 and 6%, by only observing these equations, it is

unclear what values of tariffs will be beneficial for each nation.

1.4 Solution to the Gain Maximization Problem

At this point, if the demand functions for foreign currency of each nation are
known, from (1.10) and (1.11) the Nash equilibrium pair (8,8*) can be found.
Ultimately putting these values in (1.5) and solving for x will result in the

equilibrium triple (é, 0,0 *) = (e (@, ] *), 0, @*). Hence the triple satisfy

s (6 e psa (1.13)

éD (5) = D*(6%é)
€\ _ aury _ A\perdes 1.14
D(5)=0(1—9)D (678) (1.14)
€ (1.15)

é N * Ié
)=5(9 —1)D 3

o

Obviously, one should chec

~

whether the extremum points given by the solution
to (1.10) and (1.11) are really maximums. Differentiating the derivatives of the gain
functions once again and checking the signs for the equilibrium points serve this
purpose. So the following inequalities must hold

2

a AN N*
WG(Q,Q,H ) <0,

2

aH*ZG*(é, 6,0")<0

which means (see Appendix C)

~ ~ ~ ~ - s0—¢é e 1.16
02 (1~ 0)egp" (8¢) - 6D (3+2) ~ 20—’ (5) <0 (116

8(8* ey +&)D’ (%) (1= 8%)eg.eD" (%) S0 (1.17)

2
: (A A (1 : :
Hence we can formulate our main result: If pair (9,9 )6 (ﬁ’ 1) is a unique

solution (1.13), (1.14), (1.15), (1.16), (1.17), then it is the Nash equilibrium of the

game.
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As an important note, there can be two kinds of intersections for (1.4). According
to Schwartz, the intersection occurring over the decreasing interval of xD (x) gives
some useful economic and mathematical insights (see [15]). This is called a normal
configuration and was illustrated in Figure 1.3. Another case is the intersection
point occurring at an increasing interval of the function. The following figure

illustrates this case.

Figure 1.4: Solution to xD (x) = D*(x), Abnormal configuration

Economically interpreted, this scenario leads to misconception since if both
functions are increasing, their derivatives with respect to the exchange rate is
positive which does not make sense. The functions must be responding to changing

exchange rate in an opposite way.

1.5 Symmetry and Asymmetry of Economies

Demand functions differ from nation to nation. Specifically, two nations are said
to be economically symmetric if

D(x) = D" (%) (1.18)
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which implies that their demand for each other’s currency are equal under any
given exchange rate. Economically, this means that on average they produce and

exchange commodities of equal value. In case of symmetric nations, from (1.5) we

1
e(6,0%)°

can simply conclude that e(8%,8) = Thus, e(6,6*) = 1, which makes

perfect sense. Since two nations have equal demand for each other’s currency,
neither is able to employ dominant economic power over the counter party, so the

Nash equilibrium will occur at equal tariffs and a unit exchange rate. More

G(e(0,07),0,0%), from the result of Game

rigorously, since G* (6(919*) ,0%, 9)
Theory ([38],p.134) follows that 8 = 6" for Nash point (é, 0 *) This fact simplifies
the computations above. Specifically, taking § = 6" and e = 1, (1.11) becomes

nN_ o L (1.19)
91)(5)_(9 D)

Given the function D (x), the equilibrium pair (8, 8*) is found.

However, more realistic case is economically asymmetric nations having different

demands for each other’s currency. In this case, the equality (1.18) no longer holds.

So the nations will have different tariffs imposed on imported commodities.

In [15], the following demand functions for symmetric nations were considered:
. (1 2w . . .

D(x)=D (;) = (1 + x)72. Since two nations are economically symmetric, we

have § = #*,é = 1. We use (1.19) to solve the equation for 8. Given
1
D(x) = D* (;> — (A+x)2

the derivative of the function is

D'(x) =

2
(1+x)%

putting it into (1.19) gives )
=0 -D——73)

(1+3) (1+3)
solving for 6 yields
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179 O-1)=1
from which we trivially get
0=06"= :
3

The solution (é, 0,0 *) = (1, g, g) agrees with Schwartz’s results. So in case of
symmetric nations with the foreign currency demand functions given by D(x) and
D*(%), we obtained the Nash equilibrium point at equal tariffs to be imposed that
maximize the gain for both nations from trade. However, neither is able to tax the
competitor by a greater amount than itself being taxed by. In addition, we consider
two more examples.

Symmetric Case:

1

Here we consider one more symmetric case. Suppose D(x) = D* (;) =(1-

ax)¥, a < 1. Similarly applying (1.19) leads to the following solution. Given

D(x) = D* (%) = (1-a0)*,

the derivative is
D'(x) = —a,

putting it in (1.19) gives

0(1-3)=©-D(-a),

from which

0—a=a— a0,

solving for 6 yields

0 =g = 2a
7 1+a
So the Nash equilibrium is (¢,0,8") = (1, 12+—aa, 124_—““) Similarly, given any value a,

which defines the shapes of the demand functions, the equilibrium point will occur
at the same tariffs for both nations.

Asymmetric case:
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Now we generalize the problem to a more common asymmetric case. Suppose
D(x) = exp(—6x),8 > 0,D*(x) = (axexp(fx)) A 1.a,B > 0. Then solving (1.5)

yields the equilibrium exchange rate

_ —6In (ab")
09 B+5

The Nash equilibrium condition (1.10), (1.11) gives

o (6" —1)In(abd*) =6
- 55

(see Appendix B) and
pe (06" —1)=O"B—-5660"— 1) In(ab*) +6)(6" — (6" — 1) In(ab7)).
Specifically, if « = 0.01, 8 = 2,6 = 2.5, the Nash equilibrium pint is (é, 0, é*) =

(0.81,0.54,0.73). The equilibrium exchange rate which is the solution of (1.5) is

illustrated in Figure (1.5).

05 Currency Supply-Demand
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0 0.5 0.81 1 1.5

Figure 1.5: Solution to xD (x) = D*(x) for D(x) = exp(—2.56),D*(x) =
0.0lxexp(2x) A 1

47



Here the Nash equilibrium point was obtained for the case where D(x) # D*(i).

Solution to the system of equations (1.13), (1.14), (1.15) leads to a domestic nation
imposing greater tariff than the foreign nation. Initially, based only on the shapes
of the functions D(x) and D*(x), it is impossible to identify which nation is

“economically stronger” and therefore will have a greater optimal tariff.

From the asymmetric case here, we intentionally took the functions D(x) and
D*(x) such that solving the system of equations (1.13), (1.14), (1.15) explicitly for
the currency exchange rate and at least one of the thetas (in this case 6) were
possible. Obviously, unlike the situation above, depending on the functions D (x)

and D*(x), is might be impossible to provide an explicit solution.

1.6 Effects of Currency Demand Functions on Equilibrium
Point

Clearly, the economic strength of a nation relative to its competitor is determined
by the foreign currency demand function. Economists may give a precise answer
to whether greater demand for the competitor’s currency is advantageous or not
for a given nation over another, however in our model we rely completely on
mathematical outcome and we define economic dominant power of a nation over
the competitor as the ability to impose a greater tariff according to the system of
equations (1.13), (1.14), (1.15). Put another way, a nation is said to be economically
dominant over the competitor if after solving the system of equations above, it has
the Nash equilibrium tariff greater than that of a competitor. However, this fact is
not directly observable from the currency demand functions. It would be desirable
to be able to identify patterns defining which nation is stronger economically in
that sense by comparing the currency needs they have relative to each other.
Ultimately it all depends on the outcome of the system. We illustrate some

examples of changing demand functions and their effects on the equilibrium.

Case 1: Stronger demand function for the second nation
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Originally we had D*(x) = axexp(fx) where a =0.01 and S = 2. Now
strengthen the demand of the second nation by making f = 3. The graphs of

xD(x) = D*(x) would now be slightly different

D(x)
09 r s D*(x) | 7|

081 1

0.7 r 1

051 1

04 r .

03r 1

0.1} 1

0 05 0.78 1 1.5 2

Figure 1.6: D(x) = exp(—2.5x),D*(x) = 0.01xexp(3x)

The Nash Equilibrium point we obtain based on this modified function now is:
(é, é*) = (0.63,0.69) . Since the tariffs are defined as (1 -0,1- 9*) =
(0.37,0.31), we have the first nation still being able to impose a greater tariff than
the second nation. Recall that the initial results were (é, @*) = (0.54,0.73), so

(1-0,1—-0%)=(0.46,0.27).

One might have concluded before, that greater foreign currency demand function
causes a nation to be trapped by the necessity of the imports from the competing
nation and therefore, this gives the competing nation some economic dominant
power resulting in greater tariff to be imposed. However this logic does not directly

translate into the outcome of the system of equations above.

Case 2: Stronger demand function for the second nation

49



Now let us take f =4 to make D*(x) even stronger. So, now D*(x) =

0.01xexp(4x).

D(x)
09 — D*(X) ]

0.8 1

06 1

05 1

04 1

03 1

01 1

0 0.5 0.74 1 1.5 2

Figure 1.7: D(x) = exp(—2.5x),D*(x) = 0.01xexp(4x)

The Nash equilibrium point now is (@, 9*) = (0.68,0.66). So the tariffs are
(1 -6,1- @*) = (0.32,0.34). Here the second nation is already able to tax the
competitor by a greater amount. We can conclude that changing the constant
parameters of the function, and therefore its shape does not give a predictable

answer to what it might result in.

The value of f which would make the tariffs equal for the first and the second
nation under these functions is 1.48. In this case we would have (é, é*) =
(0.73,0.73) and (1 -0,1- 9*) = (0.27,0.27). The functions are illustrated in the

following figure.
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Figure 1.8: D(x) = exp(—2.5x),D*(x) = 0.01xexp(1.48x)

1.7 Dominant Foreign Currency Demand Functions

The economy of a given nation, whose equilibrium tariff to be imposed on
imported commodities is greater than the one of its competitor, is called
economically dominant. We have stated that the foreign currency demand
functions ultimately determine which nation will be able to impose a greater tariff.
Regardless of inability to anticipate which nation will possess such economic power
based only on the demand functions, we can review some examples of functions
leading to an economic dominance. We refer to the foreign currency demand
function leading to an economic dominance (in that sense) as dominant function.

Basically, the shapes of these functions expose the influence of the exchange rate
on the currency demand. So different shapes can be interpreted differently. In
particular, more concave or smooth the function is, less sensitive it is to the change
of the equilibrium. Likewise, more convex function exposes much sensitivity to the

exchange rate.
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The solution to the system of equations (1.13), (1.14), (1.15) can expose a total
dominance of one nation over another. This is reflected in one tariff to be zero,
thus one nation being unable to tax the competitor while the other nation can
impose any tariff. This case leads to an economic nonsense. Namely, if the
dominant nation imposes a tariff equal to 1, which means that it absorbs 100% of
the value of imported commodities. This would lead to another nation abandon
trading with such a competitor altogether. At the same time, since there is no
commodities flow from one nation to another, the exchange rate also loses its sense.
Since the mathematical model we provide assumes that the trading continues as
long as the indicator conditions are met in (1.3), we have to logically restrict such

possibilities.

In Section 1.2, we claimed that % < e < M, for some large number M and % <0<
1,% < 6* < 1. Also the conditions D(0) = 1,D(c) = 0,D*(0), D*(0) = 1 must
be respected. This restriction averts the possibility of the scenario described above.
However, the demand functions which can cause such situations deserve some
attention. Such functions are not generalized in this thesis, so we do not provide
the properties they must satisfy in order to lead to such case. So instead of

abstraction, here is a list of such pairs of D(x) and D*(x). We are interested within

the domain of 0 < x < 1.
Example 1:

Foreign currency demand function of the first and the second nations are given by
D(x)=1—-x)"D'(x)=xA1

where (.)* denotes the maximum between the expression inside the parenthesis

and zero. A denotes the minimum between the two sides of the symbol. These

functions are illustrated in Figure 1.9. Their derivatives are D'(x) = —1 and

D*'(x) = 1 respectively. Putting D(x) and D*(x) in (1.5) yields
e
e (1 - 5) = 0%
from which eliminating e and rearranging the terms gives
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0—e=006"
solving for e results in
e=6(1-26"). (1.20)

Once having e expressed in terms of 8 and 6%, we can solve the equation (1.10)

which looks like
€ _ g+ (1.21)
1- i 6*(1-0),

putting (1.20) into (1.21) gives

1
1 —59(1 —-6")=6"(1-9),
canceling and rearranging some terms yields
0*=6"(1-196)

from which 6 = 0, while the value of 8 can be anything within the range of [0,1].

Foreign Currency Demand Functions

1 |
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Figure 1.9: D(x) = (1 —x)*, D*(x) = xA 1
Example 2:
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Here we provide a square root function for one nation

D(x)=1—+x, D'(x) =xA1
where the second function is still the minimum between x and 1.

Foreign Currency Demand Functions

X

Figure 1.10: D(x) = 1 —+x, D*(x) =x A1

Their derivatives are given by D'(x) = — % and D*'(x) = 1. Applying (1.5) for

these functions gives the solution to the exchange rate as follows

1— [£) =
e ) =0"

eliminating e on both sides gives
Vo — e =06"V9,

from which e is obtained to be the following expression

e=0(1—0"2 (1.22)

Applying D(x) and D*(x) in (1.10) results in
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1.23
1—£=6*(1—0), ( )
NG
putting (1.22) into (1.23) yields
Ve
1—-—=06"(1-0),

this equation simplifies to
1-(1-6")=06"(1-19)
and ultimately
0" =0"(1-106)
from which we can conclude that 8 = 0,6¢[0,1].
Example 3:

The next pair of functions which lead to the similar scenario are

D(x) = exp(—x),D*(x) =x A1

Foreign Currency Demand Functions
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Figure 1.11: D(x) = exp(—x),D*(x) = x A1
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Differentiating of both functions gives D'(x) = —exp (—x) and D*'(x) = 1 from

(1.5)
eexp (— g) = 0%

taking natural logarithms from both sides leaves

"~ Ing*
5~
solving for e gives
e = —0In6". (1.24)
Applying (1.10) yields
e *
exp (— 5) =60*(1-9), (1.25)
solving for 6*
e
o= PR (1.26)
1-6
Putting (1.24) in (1.26) gives
g+ = (0!119*) 1
“P\Te J1-v
simplifying the numerator,
0" =6"(1-9),

so the resultis 6 = 0,6%¢[0,1].

Example 4:

Here, one of the functions is quadratic
D(x)=1—-x%D*(x)=xA1
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Foreign Currency Demand Functions
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Figure 1.12: D(x) = 1 —x%,D*(x) = x A 1

Their derivatives are

D'(x) = —-2x,D*(x) =1,

e? .
e 1_ﬁ = 0%,

by solving this expression for e, we arrive at

e =+/02(1— 6%,

(1.5) gives

by (1.10)

2

e
1-23=6"(1-6)

and correspondingly by (1.27) and (1.10)
0" =6"(1-0)

from which 8 = 0,0%¢[0,1].

1.5

(1.27)
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Example 5:

Consider a logarithmic function

D(x)=1—-In(x+ 1), D*(x) =xA1

Foreign Currency Demand Functions

D(x)
09r m— D*(x) |
08 r 7
07r 7
06 7
051 7
04 -
03 r 7
02r 7
01r i
0 1 1
0 0.5 1 1.5
X
Figure 1.13: D(x) =1 —In(x + 1) ,D*(x) = x A1
Derivatives of D(x) and D*(x) are respectively given by
D) = ——, D) =1
YT V=4
again by (1.5)
e
e(l—ln(g)) =0,
rearranging the terms and removing logarithm gives
(1-6) =2
exp =3
from which
e=0exp(l—0),

(1.28)
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by (1.10)
1- lng = 0°(1-6), (1.29)

putting (1.28) in (1.29) results in
0*=6"(1-06),

asaresult & = 0,0%¢[0,1].

Example 6:

Here we have a combination of logarithmic and cubic functions

D(x) =1-In(x+1),D*(x3 A1)

Foreign Currency Demand Functions

D(x)
09 —D*(x) b

0.8 1

06 .

05 1

03 1

02 1

X

Figure 1.14: D(x) = 1 —In(x + 1),D*(x) = x3 A1

Derivatives are

1
D'(x) = —m, D*(X) = 3X2.

Applying (1.5) .
_In=) = (6%e)3
e(l lne)—(ee),

59



canceling e leaves the following expression
e
1-In-=06"¢?
ng e

from which

e
0 = —
exp (1—6*7¢e?)

Applying (1.10)

e
1- lng =6"(1-6)3(0%e)?

replacing 6 with (1.30) ultimately yields

0" =0°(1—0)

and therefore 8 = 0,0%¢[0,1].

1.8 Empirical [llustration

This section illustrates the application of the model described above. Specifically,
we analyze the trade data of Georgia and Turkey. Because of the free trade
agreement, we have § =1 and 6" = 1. The data is taken from the National
Statistics Office of Georgial. In order to observe the quantities of products along
with their prices, we extract HS-4 and HS-6? classifications which contain products
imported and exported filling a significant portion of total trade. In addition, since
the traded products are measured in US dollars, we convert those amounts into
national currencies at an exchange rate for 3.01.2020. In particular, we take
USD/GEL? = 2.8661, USD/TRY*=5.9705. USD/TRY exchange rate is taken as an
average of that day’s bid and ask values. Once these quantities are in place, we can

obtain prices of per units of products in national currency.

Source of Data: www.ex-trade.geostat.ge

HS-4, HS-6 classification of products contain quality measurable products

www.nbg.gov.ge
www.tcmb.gov.tr

Ll o e
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Product p d* pUSD pd” A" Lo p*x>py
Code

0208 0.5732 225 4.5 12.8975 0

0302 1.1575 1225.7 495 1418.72 1418.72
0601 8.4333 13.9 40.9 117.2235 117.22
0602 0.5236 31.2 5.7 16.3368 16.34
0703 3.8460 23.4 31.4 89.9955 90.00
0703 1.6507 709.1 408.4 1170.52 1170.52
0713 3.4269 4.6 5.5 15.7636 15.76
0802 17.4832 22 134.2 384.63 384.63
0802 16.4890 24.3 139.8 400.68 400.68
0810 1.4032 158.3 77.5 222.12 222.12
0713 8.1574 6.5 18.5 53.02 53.02
0901 28.2789 1.5 14.8 42.42 42.42
0902 7.1656 434.2 1085.4 3110.87 0

1106 0.5720 94.2 18.8 53.88 53.88
1209 0.4379 7.2 1.1 3.15 3.15
1211 6.1839 596.4 1286.8 3688.10 3688.10
1401 0.2166 22.5 1.7 4.8724 0

1502 3.5314 16.8 20.7 59.33 0

1504 4.6143 2702.5 4350.9 12470.11 12470.11
1515 2.5814 382.6 344.6 987.66 987.66
1516 9.7447 0.5 1.7 4.87 4.87
1522 1.0058 49.3 17.3 49.59 0

1806 6.4691 59.9 135.2 387.50 387.50
2005 0.0000 0 0 0 0

2007 0.0000 0 0 0 0

2103 0.0000 0 0 0 0

2106 59.4716 8.3 8.3 23.79 0
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2201 0.8571 73 73 209.23 209.23
2204 8.4297 20 20 57.32 0
2204 7.7026 30.1 30.1 86.27 0

Table 1.1 Exported products from Georgia to Turkey

The first column of Table 1.1 contains the unique codes of products. The second
column p is the GEL value of pUSD column values which are the prices of the
exported products measured in USD. The third column d* is the quantity of
exported products. The fifth column pd* is the GEL value of exported product and
the last one contains the same value filtered by the given indicator. Similarly, Table
1.2 indicates the imported data in Georgia from Turkey. Columns d and p*USD
contain the imported amounts of products and their total values measured in USD.
Once converted into TRY, we have the second column named p*. Amounts of
products exported from Turkey to Georgia measured in TRY is given by the column

p*d and the same amount given the indicator function is in the column

p*d1{9p>xp*}-

An important note to take into account is that the Tables 1.1 and 1.2 represent the
extract from the original data. The full data is contained in the accompanying
spreadsheet file. Here we have several assumptions. Firstly, the random variables
dy, i, Ay, Dy, are assumed to be realized in year 2019 data. So we take the values of
those random variables as defined on the extended probability space and compute
the desired quantities accordingly. Since 8 = 1 and 8" = 1, the only relevant

equation from the system (1.13), (1.14), (1.15) is (1.13). However, as shown later,

the quantities of D’ (%) = —0.93 and D*(87¢) = 0.11.

In addition, because of the individual product prices and quantities grouped within
the classified data, individual product prices and quantities are found by averaging
the price for the quantity given. That provides an approximation to individual
product prices. Similarly, the quantities contain the total quantities for all products

within a given category. So, the quantities cannot be approximated to individual
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product quantities. However, since we are interested in the currency flow between

the two countries, we approximate the amount of currency exchanged by taking

the product category as a single product and applying its observed quantity along

with the average price.

Product p* d p*USD p*d P d1(opsxp)
Code

4010 25.3656 135.6 576.1 3439.58 3439.58
4011 44.2944 610.6 4530 27046.14 0

4011 21.7291 2573 9364.3 55909.08 0

4012 14.2939 88.3 211.4 1262.15 0

4013 37.8894 2.6 16.5 98.51 0

4014 77.6159 1.6 20.8 124.19 0

4015 0 0 0 0 0

4015 31.5858 83 439.1 2621.63 0

4016 298.5225 0.4 20 119.41 0

4016 9.2271 1.1 1.7 10.15 10.1498
4016 16.5688 12221 3391.5 20248.78 20248.78
4017 15.6898 8.6 22.6 134.93 134.9322
4104 0 0 1.1 0 0

4106 126.8721 0.8 17 101.50 0

4107 48.0541 133.6 1075.3 6420.02 6420.025
4112 182.0987 0.2 6.1 36.42 0

4113 76.2891 6.3 80.5 480.62 0

4114 41.7932 0.2 1.4 8.36 8.3586
4115 44.7784 1.8 13.5 80.60 80.6011
4201 32.8385 0.2 1.1 6.57 6.5675
4201 55.7242 0.3 2.8 16.72 16.7173
4202 194.0396 0.2 6.5 38.81 0

Table 1.2: Imported products from Turkey to Georgia
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In order to obtain the functions D (x) and D*(x), we construct the exponential and

logarithmic regressions respectively. The following table illustrates the currency

demand functions for varying values of the exchange rate.

x 0 0.2 0.4 0.6 0.8 1
D(x) 1 0.6442 0.5017 0.3046 0.2416 0.1965
D*(x) |0 0.1593 0.3575 0.5789 0.6097 0.6143

Table 1.3: Currency Demand

Corresponding regression plots are given in Figures 1.15 and 1.16.

D(x) = 0.7442e3301x

* g
L
[ L " e
.y ""I'-.--'_.'......I..l
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[
LN
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15 2

Figure 1.15: Exponential Regression for D (x)
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LN
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D*(x)=0.2286Inx+0.5977

0.7 -_..!.-----‘---3----. -

.
0.6 e 0 0 R0
0.5
.
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0.3 e
0.2
.

0.1

L

0 0.5 1 15 2 25

Figure 1.16: Logarithmic Regression for D™ (x)
From the definition of (1.1), (1.2), we compute Cy and Cy and from (1.3) we have

the following table.

CN CItI E(pd*]-{e*p*x>p}) E(p*d1{6p>xp*}) e D(E) D*(ee*)
0

3861 | 1351 | 935.07 310.95 2.0339 0.37 |0.76

Table 1.4: Components of the system (1.13), (1.14), (1.15)

Since we have a free trade agreement implying 8 = 1 and 8" = 1, we only have
to solve (1.13) from the system of equations and obtain an optimal exchange rate.
The solution to this equation yields é = 2.0339 while the cross rate computed is

GEL/TRY = 2.0831.
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Chapter 2 Gibbons Model
2.1. Description of the Model

In this chapter we describe one additional model proposed by R. Gibbons [12]. The
primary difference between this model and the one developed before is that, this
model defines the gain function based on completely different parameters. The

approach to find the Nash Equilibrium point is identical.

R. Gibbons considered a model in which the economic welfare of a nation is
determined by consumers’ surplus enjoyed by the consumers within a given
country, profit made by the local firms from selling goods on the domestic and
foreign markets and the tariff revenue collected by the government from foreign
imports. Two nations enter into an unrestricted bilateral trade. Competitive game
between the nations is based on the sequence of decisions made by the firms and
governments. Initially, the governments impose tariffs on imported products and
the firms in both countries respond by deciding on the profit maximizing quantities
of products for the home consumption and exports. The governments’ aim to
maximize economic welfare results in a prisoner’s dilemma type of non-

cooperative game.

According to the model, total production within the domestic and foreign markets
are given by
Q=h+fQ"=h"+f

respectively, where h and h* are the production for the domestic consumption
while f and f* are the exported production for the domestic and foreign firms. Let

us assume the market clearing prices for the production are given by

P=a-QP =a-Q"

where a is a positive constant satisfying a > Q and a > Q*. Given t and t* are the
tariffs imposed on imported production for the domestic and foreign countries,

profits for the firms are defined respectively as

66



nt e hf,h ) =(@—h—=fHh+(a—h" = f)f —t'f, (2.1)
(et h fh f) = (a—h' = fh+(a—h—fOf —tf
Having defined these profits, the welfare of nations is determined as follows

W(t, t*’ h, f’ h’*;f*) — %QZ + T[(t, t*, h,, f; h*,f*) + tf* (22)

1
w*(t, t*, h f,h", f*) = EQ*Z + o (t.t" h f,h" )+t f
So here the nations are facing a dilemma to set an optimal tariff on imported

commodities and take into consideration the optimal response from the

competitor.

2.2 Game Without Exchange Rate

In this section we aim to solve the tariff optimization problem in order to maximize
the welfare functions. Here the nations not only have to optimize the tariffs giving
maximum welfare, but also to optimize the quantities of commodities produced for

the domestic and foreign markets.

For a given set of tariffs ¢, t*, the Nash equilibrium point for the firms is found by

solving the system of equations

J . . (2.3)
%T[(tltlhlflhlf)_ol
O et b b f7) = 0
ahn ) ) Pfl Ff - )
O .t b f R F?) = 0
afT[ ) ) Pfl If - Y
O ot b f b f) = 0
af*n: ) ) )f! Ff - )
which yields (see Appendix D)
~ a+t . a-2t" . a+t , a—2t (2.4)
h=m /=g =g =3

So, depending on the tariffs imposed by the governments, firms produce goods

according to (2.4). The governments themselves select the tariffs to be imposed on
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imports by maximizing their economic welfare functions. Having defined

h,f,h*, f* in terms of t and t*, (2.2) can be redefined as the functions of tariffs

a+t a—2t a+t" a—2t (2.5)
3’ 3 " 3 " 3 )'
a+ta—2t a+t" a—2t
3" 3 " 3 7 3 )

The Nash equilibrium point for the game is obtained from solving the system

W t)=w (t, t*,

W, t) =W (t,t*,

0 e (2.6)
at*W(t,t)—O

g (t,t)=0
at ) - )

a a
3’3

which gives (¢,1*) = ( ) (See Appendix D) So in case of imposing tariffs, total

production for each market are

.~ . 2a-t
Q:h-{—f*: :
3
. 2a-t"
Q' =h+f=
3
compared to
~ 2a . 2a
Q_S’Q_3

in case of zero tariffs. Since the non-cooperative solution is not Pareto-optimal, the
tariff game is a prisoner’s dilemma type of problem. Here we obtain the similar
result as we have in Schwartz’s model. Free trade policy is beneficial for both
parties. It is possible to draw a parallel to the results obtained in the asymmetric
case of the previous model. When the parameters in the model are identical,
neither nation has the dominant power over the competitor so they will have to

impose equal tariffs.

2.3 Game With Exchange Rate

In this section we introduce a currency exchange rate, redefine the welfare and the
firms profit functions of one nation taking the exchange rate into account, and find
the Nash Equilibrium point for the welfare functions. We define the currency
exchange rate as it is done in the original model. Within Gibbon’s model, not only

the tariffs to be imposed on imported commodities are optimized along with the
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exchange rate, but the quantities to be produced as well. Here the currency
exchange rate is not directly a function of tariffs, but it is a function of exported

commodities of domestic and foreign firms which themselves are the functions of

tariffs.

*

Let us introduce a currency exchange rate e = z{ 7 where p and p*are the market

clearing prices for products on domestic and foreign markets while f and f* are
the exported production for the domestic and foreign firms. Taking the currency

exchange rate into account, profits made by firms in domestic and foreign markets

are defined as follows

n(t, t h f,h, f)=(@—h—f")h+(a—-h"—-f)f —t'f, (2.7)
n(t,t h, f,h*, f")=e(a—h"—f)h*+e(a—h—f")f" —etf"

The economic welfare of countries are
1
W(t, t*, h, f; h*,f*) — EQZ + T[(t, t*, h, f; h*,f*) + tf*, (28)
1 2
W=, t*, h,f,h", f*) = EeQ* + 7 (t, t5 h, f,h", f*) +etf".

Solving the system of equations (2.6) does not yield an explicit solution for t and
t*. They can only be solved by numerical methods. However, given the optimal

values of t and t*, we can solve for A, f,h*, f* (See Appendix D)

~ _a—f" 2.9
=220 (2.9)
., a+t’
R =—m
. a—2t"
f=—7F—
f*_a—h—t+\/(a—h—t)2+3(a—h*—f)h*
3

These are the quantities of commodities produced by firms on both sides for
domestic and foreign markets. Obviously differentiating the welfare functions with

respect to tariffs would not give explicit solutions, so we do not provide the

expressions here.
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Unlike the previous model, Gibbons model does not explicitly account for foreign
currency demand functions. Rather it focuses on firm specific details and expresses
the welfare function for a given country as sums of firms’ profits, tax revenue made
by the country and the consumers’ surplus within a given country. As a comparison
with the previous model, it can be noted that once the objective functions are
defined, maximization problems are identical in both models and both lead to an
optimal Nash equilibrium. From the practical point of view, measuring all the
quantities making up the welfare functions are quite feasible. Namely, the last two
parameters, tax revenue and firms’ profits are trivially measured. Consumers’
surplus depends on the willingness of consumer’s to pay for particular products. So
there must be estimated price demand functions compared with actual prices for
particular products. However, according to the welfare functions defined above,
the first parameter named as consumers’ surplus is not really a consumers’ surplus
classically. The idea behind using quantities produced for the domestic and foreign
markets as consumer’s surplus is that economic benefit is enjoyed by the nation
producing and selling these goods. Accurate estimation of consumers’ surplus is a

matter of scientific research. Related papers are listed in bibliography.

Once the exchange rate is determined, we continue the thesis with portfolio
optimization model which can be applied to any trading instrument with

observable price dynamics including the currency exchange pairs.

2.4 Empirical Illustration

Since there is a zero tariffs imposed on imported products, instead of computing
the optimal production level for domestic and foreign consumption, we estimate
the exchange rate that is determined by the exported and imported products along
with their market clearing prices. Here we assume that the market clearing prices

are the ones observed by the National Statistics Office of Georgia. In particular, we

pf

*

have e = =. We can translate this fraction into the terms of the previous model.
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In particular, since the numerator and denominator represent the total amounts of

E(p*d1{9p>xp*})

exported and imported products, we take e = - .
E(@d™1(6+p*x>p))

Since only the observation on whole classification of products is available with total
prices measured in USD, here again as in previous example, we divide the total
amount of exported and imported products measured in USD by the quantities and
convert them into the national currencies of both countries at the given official

exchange rate for 3.01.2020.

Since we assume pf* and p*f are the quantities defined already on an extended
probability space, we take the sum of the last column values in Tables 1.1 and 1.2

which are

N

1w
E(p*d1liopsapy) = NE E (Prdicl{gp,npyy) = 1423820,
k=1

1 N
E(pd"Lig o)) = Nz E (pdi 1{grpjaopyy) = 773305.
k=1

Both of these quantities are given in thousands of national currency units. As a final
note, since in the previous model, we have computed GEL/TRY, here we reverse

the exchange rate fraction and get e = 1.8412.

In order to define optimal quantities, we have to make several assumptions for
reasonable approximation. Since the information about profits made by firms in a
given country is not available (domestic and foreign countries), we assume that the
profits made from selling products on a domestic market is some portion of exports.
In particular, according to the National Statistics Office of Georgia, in 2019 total
imports equate 9 120.4 million USD and exports to 3 766.4 million USD'. At the
same time, Turkish total exports as per 2018 was 168 023 390 million USD and
imports reached 223 039 038 million USD?. As an approximation, we take
Georgian exports made by firms being 2.4 times lower than imports. Similarly, we
assume that Turkish firms export represent only % of total imports. So, since we

have f =334870 and f*=2891306 , we take h=139529 and h" =
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2178 125. Before we have all we need in order to estimate the optimal quantities
of commodities for domestic and foreign consumption from (2.9), the only quantity
to be estimated remains the constant a. We already have observationson Q = h +
f*and Q* = h* + f. Applying these quantities and the fact that P = a — Q and
P* =a— Q" , we approximate a by computing it for both price equations and
averaging it out such that it satisfies the inequalities a > Q and a > Q*. This way
we obtain approximate a = 3 051 782. Using the equations (2.4), we get the final
quantities. If Georgia chooses to produce 1 million for the domestic production,
ie. h=1000000, then we obtain A* =1017261, f =1017261 and f* =
2953 279. Obviously, the quantities h* and f coincide because of the absence of
tariffs imposed by any country. At the same time, the result of f* being almost
three times higher than f is intuitive and is directly visible from the original

export/import data.

1.Source of Data: www.geostat.ge

2.Source of Data: www.wits.worldbank.org
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Chapter 3 Portfolio Optimization
3.1 Portfolio Wealth Process

Consider a portfolio consisting of n risky assets. [39] examines the multi-
dimensional Brownian motions for self-financing portfolios. To model the asset
price movements, we take n — dimensional Ito’s process which is a vector of asset
prices S* = (§%,...,8™)T driven by n — dimensional Brownian motion B =
(BL,...,BMT, where B! = (B}, t > 0) be the real valued Brownian motion which

starts from O on (, F, P):
dst = Si(utdt + o'dB;) (3.1)

where u' is the drift and o' is the row vector (¢'1,...,6™). For more convenient

notation we can convert the differential equation into the following form:

dst = Si(utdt + o*dB} + ...+ ¢ dB}) (3.2)
Define the portfolio wealth process V; corresponding to self-financing portfolio to
follow the differential equation:

dV, = 0}dS}t+ ... +00dS} (3.3)

Since we only consider long portfolios, here 8] denotes the number of j™* asset
purchased at time t and it is a finite variance process. To solve this process, we

extend the differential equation and introduce some notations. Let 7} = 6;S} be
i i

the cash position of i*" asset and let g} = % be the weight of i asset within a
t

portfolio at time t. Having defined these quantities, we can proceed to solve the

portfolio wealth process as follows:

dV, = 61St(utdt + o*dB} + 0'?dBZ+ ... +01"dB}") (3.4)
+ 02SE(u*dt + 0?*dBt + 0*2dB?+ ... +0*"dB}) + -
+ 0SSP (undt + o™ dB} + 0™ dB?+ ... +c™dB}).

Multiplying the terms, factoring out the like terms and converting the equation

into 7} terms yields:
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AV, = (m}ut + mu?+ .. +wfu™)dt (3.5)
+ (o't + 2o+ ... +nlo™)dB}
+ (nto'? + m20??+ ... +alo™)dBi+ ... +(nio™

+ mfo’™+ ... +lc™)dB]

At this point we have arrived to an equation defined in terms of dollar positions in

each asset within a portfolio. However, since our ultimate goal is to optimize the

asset weights, we need to convert this equation into the terms of qg . This is
achieved by multiplying and diving the right side of the equation by V; at the same
time. So, the result is an equation translated into weight terms:
dVe = Ve[(qtp* + qiu’+ ...+ qfu™)dt (3.6)
+ (qto* + q?o?' + ...+ ql'o™)dB}
+ (qto** + qto**+ ... +ql'c™)dBE+ ... +(qtc™
+ qZo*+ ... +ql'd™)dB}]
Since the optimal weights imply an investor should hold these weights constant
during an investment horizon, it means an investor should constantly re-balance
the portfolio in order to maintain the once selected weights. So, assuming that
weights are held constant at any point in time t, we can correspondingly update
the equation (3.6) into the form:
dVe = Ve[(qip' + g+ ... +quu™)dt (3.7)
+ (g1 0™ + q0% '+ ... +q,0™)dB}
+ (q10*% + q,0%%+ ... +q0™)dBE+ ... +(q 0™
+ q,0%"+... +q,0™)dB}]
In this equation, all sums within the parenthesis are constants, so we can shorten

the notation by introducing the new notations. Let

A= quu' + @u’+ .. " 58
and
0 = q10Y + q,09+ ... +q,0™ (3.9)
forallj =1,...,n. Equation (3.7) now becomes
th == Vt[ﬁdt + Elng + Edeg‘l' . +5nde-1]- (3.10)
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Solution to this differential equation by [39] is:

1
V. =Vyexp (| — > (6% + G2+... +6,§)] t + 5,B} + 6,B}+ ... +6,B}) (3.11)

Power can be simplified once more if we let i =p— % (62 + 62+ ...+62) and

represent the sum of Brownian motions as a single Brownian motion by adjusting

the coefficients accordingly. So

Bt + 6,B?+ ... +5, B = 6B,

where
5=\/512+52?+...+5,%. (312)
Finally, the portfolio wealth process is
V, = Vyexp (fit + 6 By) (3.13)
At this point, it is clear that the power
R, = jit + i B, (3.14)

so called return of the portfolio is a Brownian motion with drift and diffusion

coefficients. Since it represents the rate at which the portfolio wealth is changing,

R(0) = 0.

3.2 Minimum Return Level
Given the portfolio wealth process by (3.13), it is clear that minimum portfolio

wealth by high confidence level is reached when (3.14) obtains the lowest value by
the same confidence level. In order to measure it, we need to know the probability
distribution function of portfolio returns. Once we have estimated the probability
distribution function F for portfolio returns, we can extract the quantile F~!(a),
where alpha is a significance level, usually taken to be 1% or 5%. The key
improvement brought by the First Passage Time is that, if the estimated portfolio
return probability density function does not turn out to be symmetric while the
volatility is significantly large, then the portfolios’ expected bounded FPTs will
often differ a lot. Graphically, if we denote MRL as m = F~!(«), on a normal

distribution density function, it looks as follows
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Figure 3.1: m level taken from the Normal distribution density function

In the figure above, m = F~*(a, 4, 0), —0.1428 = F~1(0.05, 0.4, 0.33). From now
on we will use m as the lowest level for the returns process (3.14) to reach in order

to obtain the lowest portfolio wealth.

Here we compute the MRL assuming that the probability distribution density

function is known. However it has to be estimated in real world scenario.

3.3 Expectation of Bounded First Passage Time

Next step is to define the new dimension — expectation of bounded first passage
time. For a Brownian motion with drift

Xt = Mt + Wt (3.15)

if we denote the minimum value of this process till time t as:

MZ = infX, (3.16)

S<t
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and let 7, = min{t = 0; X; < y} be the first passage time to the level y, then it is
shown from [6] that the probability distribution function for 7,, is given by

y —put y+put (3.17)

NG )

where N(x) is the cumulative standard normal probability distribution function.

P(M{ <y)=P(1, < t)N( ) + exp(2py) N(

We are looking for the first passage time for the returns process given by (3.14)

towards the level m (which we called MRL). m is usually a negative quantity.

Portfolio Return Path

RIT, m

Figure 3.2: Brownian motion path and the m level

In Figure 3.2, MRL: m = —5%, return process: R; = 0.35t + 0.25 B,, positive
drift: u = 0.35, diffusion: ¢ = 0.25.

We know that R(0) = 0. In order for (3.14) to reach the m level, the following

equation must be satisfied

=2+ B,
o

(3.18)

Q| 3

So, the first passage time t,, = min{t > 0;R, < m} has the probability

distribution function

m— ﬁt) texp (25;n> N(m + ut) (3.19)

GVt GVt

If we have a Brownian motion with drift and diffusion given by

P(RtSm)zN(

dX, = udt + adW, (3.20)
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and T = min {t = 0; X; < y}, then it is shown in [40] that the probability density

function of 7,, is given by

ly — Xol ((ut—y+Xo)2 (3.21)
2mo?t3 p 202t

fi, (®) =

Correspondingly by [41]

i 3.22
E[t, AT] =f0 tfy,(t)dt + T[1 = P(z, < T)] (3:22)
Converting (3.21) into the terms of R yields
© Im — R(0)| (it —m + +R(0))’ (3.23)
fem mere XP( 2 62t
thus
T (3.24)

E[t,, AT] = f tfr,, (®)dt +T[1—P(t, < T)]
0

The reason we switch to the bounded first passage time is that since R(0) = 0 =
m, from (3.14) it can be shown that for g > 0,E(t,,) = c0. We always consider
portfolio return process which has a positive drift, because we examine only long

portfolios in this paper.

3.4 Mean-MRL-FPT Framework
After having defined the portfolio wealth process, and MRL and expectation of the
bounded first passage time, we can construct the model of portfolio optimization.
The goal is to find the maximum MRL and bounded First Passage Time for a given
expected return for the investment end time T: E[Ry] = fT.
E[ty, AT] (3.25)
E[Rr]
m

Varying the weights g4, q», ..., q,, allocated in the assets gives us the set of different
portfolios from which selecting the best combination of the above quantities yields

the efficient surface
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E(t,, AT) 0

Figure 3.3: Surface of portfolios obtained by different weights allocated in the

assets included

On this surface, all risky portfolios are optimal in Mean-MRL-FPT sense since it is

impossible to find a better combination of given quantities for each.

As an important note, the model is particularly useful when the individual assets
within a portfolio have large variance causing the portfolio variance to be large as
well. This makes the portfolio returns likely to hit the minimum level before the
investment horizon. So, in this case E[t,, A T] < T and it makes sense to compare
such portfolios. Otherwise, if the individual volatilities are sufficiently low, then
no matter what weights are allocated in each asset, the expected bounded first
passage time almost always coincides to the investment horizon-T. In this case,
E[t,, AT] =T for any set of weights allocated to different assets and the first
passage time can be dropped altogether and the decision is to be made solely on
two dimensions — Mean and Minimum Return Level. In such a situation, we would

obtain the two-dimensional curve that looks much like the efficient frontier
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Portfolio Return
_()
=
i
(9, )
[
[

0.0430 0.0440 0.0450 0.0460 MRL 0.0470 0.0480 0.0450 0.0500

Figure 3.4: Efficient frontier constructed by E[Ry] and m = F~!(«) for different

portfolios

m 0.042 0.045 0.0448 | 0.0453 | 0.0463 | 0.0478 | 0.0489

E[Rr] |0.1145 |0.1149 |0.1152 |0.1152 |0.1152 |0.1154 |0.1156

Table 3.1: Efficient frontier

3.5 Example of Two-Asset Portfolio

Here we apply the theory described above for a portfolio consisting of two assets.
We take two Exchange Traded Funds (ETFs) from NASDAQ and observe their spot
prices on a daily bases for four months. Table E1 shows a historical data for
Vanguard Total Stock Market ETF (VTI) and iShares 7-10 Year Treasury Bond ETF

(EIF) with the daily returns computed.

Considering the investment horizon of T = 30 days, we compute /i and g; for j =
1,2 from (3.8) and (3.9) for various combinations of weights. In addition we
compute & from (3.12) and P(7,, < T) from (3.17). This information is given in

Table E2.

Since the portfolio wealth process obtains the minimum level by a given
confidence level wherever (3.14) drops to its minimum m by the same confidence
level, we observe the rate instead of the portfolio value itself. Ultimately the three
dimensions are generated in Table E3. This table corresponds to the efficient

surface similar to Figure 3.4. See Appendix E for the tables.
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3.6 Example of Four-Asset Portfolio

This section covers the portfolio consisting of multiple assets. In particular, we
consider a portfolio consisting of four common stocks — Travelzoo (TZOO), AXT
Inc. (AXTI), Universal Forest Products (UFPI), Advanced Micro Devices (AMD).
The investment horizon is taken to be 10 years. Unlike the previous example, here
we take the annual spot prices. Table E4 illustrates the annual spot prices from 2009

to 2019 taken from NASDAQ.

We compute fi and g; for j = 1,2,3,4 from (3.8) and (3.9) for various combinations
of weights. We also compute & from (3.12). This information is given in Table E5.
Ultimately the three dimensions are generated in Table E6. This table corresponds
to the efficient surface similar to Figure 3.4. Since there are too many combinations
of weights constructing different portfolios, Table E6 illustrates some combinations
of weights of four assets. Detailed results are provided in the accompanying

spreadsheet.

If we consider a hypothetical scenario where the third dimension — the expected
bounded first passage time equals the investment horizon, this dimension would
be dropped and the entire model would be replaced by the two dimensional
analogue as discussed above. Ultimately the result would again be the efficient
frontier of risky assets with the expected returns and the minimum return levels
measured for them. This case is illustrated in the following example. See Appendix

E for the tables.

3.7 Example of Three-Asset Portfolio

This section covers the portfolio consisting of three assets whose expected bounded
first passage times made up from different portfolios turn out to be quite different.
So the portfolio returns are expected to hit the low barrier in different times before
the investment horizon. In Particular, we consider a portfolio consisting of three

common stocks — Apple Inc. (AAPL), JPMorgan Chase Co. (JPM) and Walmart Inc.
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(WMT). The investment horizon is taken to be 30 months. Here we take the

monthly spot prices again. Table E7 illustrates the monthly spot prices from April

the 28%, 2017 to 1 of April, 2019, taken from NASDAQ.

We compute fand ¢ forj = 1,2,3 from (3.8) and (3.9) for various combinations
of weights. We also compute & from (3.12). This information is given in Table ES8.
Ultimately the three dimensions are generated in Table E9. This table corresponds
to the efficient surface similar to Figure 3.4. If we had done the portfolio
optimization consisting of these three assets in mean-variance framework, the
results would be as shown in Table E10 with the corresponding scatter plot in

Figure 3.5. All tables for this example are illustrated in Appendix E.

Mean-Variance Framework
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Figure 3.5: All Portfolios, Mean-Variane Framework

3.8 Example of Multi-Asset Portfolio with Large FPTs

This section covers the portfolio consisting of three assets whose expected bounded
first passage times made up from different portfolios turn out to be very close to
the investment horizon. So the portfolio returns are not expected to hit the low
barrier throughout the investment period. In Particular, we consider a portfolio

consisting of three common stocks — YUMA Energy Inc (YUMA), Immunic Inc.
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(IMUX), Savara Inc (SVRA). The investment horizon is taken to be 30 days. Unlike
the previous example, here we take the daily spot prices. Table E11 illustrates the
daily spot prices from March the 25%, 2019 to 23 of April, 2019 taken from
NASDAQ.

We compute g and 6; for j = 1,2 from (3.8) and (3.9) for various combinations of
weights. We also compute & from (3.12). This information is summarized in Table
E12. Ultimately the three dimensions are generated in Table E13. This table

corresponds to the efficient surface similar to Figure 3.4.

Since expected bounded first passage time coincides with the investment horizon
for any portfolio made up of these assets. This means that we can ignore this
dimension altogether. So instead of the three dimensional surface, here we draw
the efficient frontier in two dimensions. In particular, in the last column of the
Table E13, all values would be 30. In this case we obtain an efficient frontier
illustrated in Figure 3.6. Figure 3.4 where MRL is taken as a risk measure instead
of volatility is a preferable option though. Detailed results are provided in the

accompanying spreadsheet. See Appendix E for the tables.

Efficient Frontier

uuuuu

Figure 3.6: Efficient Frontier, Mean-Variance Framework
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Conclusion

It can be concluded that the non-cooperative trade game results in a problem of
optimizing tariffs on imported commodities. We derived system of equations and
sufficient conditions for the Nash equilibrium point which gives the optimal triple
— tariffs imposed by nations on imported commodities and the currency exchange
rate. We illustrated that shapes of the demand functions determine the economic
power one nation has over another. However, from the demand functions alone, it
is impossible to predict which nation will have a greater optimal tariff to be
imposed. It is assumed that the distributions of commodities exchanged and the
prices for those commodities are known. The examples provided are intended to
illustrate the typical cases of economically symmetric and asymmetric nations
involved in non-cooperative bilateral trade game. Obviously, in real world
scenario, the demand functions are not predetermined. Rather, they are derived
from (1.1) and (1.2). Next we provided several pairs of the foreign currency demand

functions where one nation dominates the other.

Within the same context, the second chapter dealt with the Gibbon’s model where
a similar problem is solved. Namely, economic welfare functions for the nations
differ from those in the first model. Here we solved the economic welfare
maximization problem with and without the concept of a currency exchange rate
and obtained the optimal production volumes for each nation aimed for the

domestic and foreign markets.

The final part of the thesis explored the portfolio selection process by introducing
the framework involving three dimensions. The basic idea was to extend the two-
dimensional framework by an additional one — the expected bounded first passage
time. The usefulness of the approach is evident once the individual assets within a
portfolio have large volatilities causing the returns to hit the minimum level before
the investment horizon. The paper only concerned itself with optimizing risky
portfolios. There can be numerous continuations to the problem. If an investor

decides to allocate part of the investment amount into some risk-free assets, then
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the optimal weights must be modified according to some criteria. In two-
dimensional Mean-Variance model, maximization of Sharpe ratio and building a
Capital Allocation Line (CAL) is one possible development. Similarly, one may
think of capital allocation plane as an analogue to the CAL in 3D. However, this
model is restricted to risky portfolio optimization. Within this chapter, we provide
an example where a portfolio consists of stocks and construct the efficient surface
for that particular example. This example can easily be extended to portfolios of

any assets including the currency exchange pairs.
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Appendix A

The following system of equations determine the tariffs each nation has to set in

order to obtain the maximum gains from trade

3
%6(6,9,6*) = Gg(e,0,0") + G.(e,0,6")eg =0, (26)
3
2 6*(e,6,6") = G (e,0,0%) + G2 (e,0,6%)ep = 0 27)

a0

where the index denotes the partial derivative of a given function with respect to

a given variable.

1
0*e’

If we define g(e, 0) = %and g(e,0) = the individual components of (26) and

(27) become

0 @ 0 0
Go(e,0,6) = 3-[= | ¥D' O - 350 @'e) = gD ()g'®)
g

2
)5

S O/ R A (29)
Gule0,0) =51 | 0 OIdngE- 50w
12 12 * yx/ * _i ’ E _ * My k! *
= gD'(9)g'(e) = 6"D"'(8"e) = 5 D' () — 6°D"(8"),
. o 0 *1 /1 dg 0 e (30)
= e e 02.) " o e),
i R e S| dg 0 e (31)
Ge(e,6,6) ~ dg [L yD (y) ol de aeD(H)
. 1 1, e
= —@%eD (9 e) (_9*62) —ED (5)

— 1D*'(9* ) 1D/ (6)
Te “ 78" \g)
eg and ey can be found from (1.5) as described next.

Let us define
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F(e,6,0") = eD (g) _D*(6%). (32)

Differentiating (32) with respect to 6 and 8" separately and equating them to zero

yields the system of equations

Fy(e,0,0%) + F,(e,0,0")eg = 0,

Fo+(e,6,0%) + F,(e,0,0")eg- = 0,

from which solving for ey and ey~ gives

L _Fee,6) _ S_ED'(g) .
6 F,(e,0,6%) D (g) N %D' (%) _ 9*D*'(9*e)'
(34)

Fg-(e,6,6%) eD*'(6%e)
e

T RERD T () o (g) -0 e

Putting these solutions into the system of equations (26), (27) yields the following results
From (26) we have
(35)

0
5g0(e(6,67),6,6%)

ST
)
e? (e
el I )+ eo D%>(3)H*D*'<9*e>
) 522 (5)  pr(9)
b()+50 (F) -0 wel? 9
oo -3 (0) +5r (§) - oo

2o () - 0() -0 ()

+00°D"'(0%¢)| = %9 [-p (g) +6°(1-0)D*'(6%)| = 0
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and from (1.9) we have

0 (36)
5576 (e(6,6,6,67)

1
= ED*I(H*Q)

1,
+ [—D* D)
e

eD*'(6%e)
S50

eD*'(0%e) 1 ey e e
=D(g) € 0 (€Y _ g pipe lee*[D(E)JrED (5)

5)+5D'(5)—6°D*'(6%€)

—0°D"'(6%e)] + [10*’(0*(3) - %D’ (g)”

e

eg 1] !
N+ 0 (5= Dp(6%) + D" (6"
[9 9 t o0 (0) (6%€) + D™ (0%)

2 ()] -5 10 ()50 - v ()] -0

Hence
D (5) = 0*(1 - 0)D*'(6%),
)

D (g) - g(e* — 1D’ (g)

For the second derivatives, we have

02 (37)
WG(B(H 0%),6,6%)

9999 €g

[9 (1—6)D*'(6%e) — D(e)]

+F[9 (1—6)epD"" (6%€) — 6"D*' (6"€)

_ 39992— eD, (g)]'
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2
0 G*(e(6,07),6,0") (38)

s rd e

Pl (G- U =ty ()

(- z’;)ee*eD” @l

- St e o () s - 00 (3)
:z le*eeg* te, (g) _Qa- Zz)eg*eD” (g)l

Assuming that the system (1.10), (1.11) has a solution and xD(x) — 0 as x — oo,

we get
xD (g) _ D0 %) > 0,if x <e,
xD (g) D0 %) =0,if x = e,
xD (g) —D*(0°x) < 0,if x > e.
Then
:—x e [xD (g) - D*(H*x)] =D (g) + gD’ (g) — 9*D*'(8%) < 0,

and from (33), (34) follows that eg > 0, eg+ < 0. Since the first summands of (37)

and (38) are zero, the conditions

2 2

d 0
ﬁG(B(B,B ),0,6") < 0’69*2

G*(e(0,07),0,60") <0

provide (1.16), (1.17).
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Appendix B

Differentiating the given demand functions
D(x) = exp(—d6x), D*(x) = axexp(Bx)
gives

D'(x) = —Sexp(—bx), D*'(x) = (afx + a) exp(Bx),

D'(x) = —8%exp(—5x), D*"'(x) = (af?x + 2ap) exp(Bx).

The equilibrium exchange rate is found from (1.5) as follows

e
eexp (—6 5) = afB*eexp(f0-e),

e
—65 = In(ab*) + f07e,

e(00*B +6) = —61In(ab”),

_ —06In (ab")
00 B+ 5

(39)

(40)

(41)

(42)

(43)

Here in (42), e is eliminated and logarithms are taken from both sides. From

(1.11) we find 6

exp (—6%) = 2(0* -1 (—Sexp (—6g)>,

cancelling exp (—6 g) from both sides gives

1=21-05
- ,

substituting e from (43) gives
(6" — 1)4In (ab”)

1=
06*B+6

now 6 can be expressed in terms of 6" solely as

(0" = 1)8ln (@6*) — &

6 =
0*p

(44)
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Putting (43), (44) into (1.10) leads to the solution of 8*. Specifically, redefining
(1.10) in terms of (39) gives

exp (—6%) =0"(1—-0)aexp(fBe)(fOe + 1),

putting (43) into this equation results in the following expression

5 In(aB*)
exp( 0075 + 5)

01— g+ —6In(ab”) 50° —60In(ab”) 1
=071~ )“exp<ﬁ I96*3+6D< Iee*ﬁm + )

replacing 6 with its definition from (44)

6 In(ab™)
exp ((9* —1)61In(ab”) — 6 + 6)

L0 B— (0" —16In(ab”) +6 1-@"—1In(ab8*)\[(1—-(6"—1)In(ab")
0B “exp< o —1 ) < o —1 )

=0

eliminating and rearranging some terms gives a simplified equation

=)
exp |7
_0"B(O" —1)6In(ab”) +6 1-(0"—=1)In(ab*)\0"— (6" — Dln (ab")
= 3 aexp 0 1 0 1 :
combining the exponents gives
1 1-(6"—-1)In(ab")
“Plo-—1 o —1
0 B—(0"—-1b6In(ab*)+6 0" — (6" — 1ln (ab")
- B * 9" —1 ’

simplifying the power of the exponent yields

0" (0" —18In(ad) +8 6" — (0" — Dln (af*)

o )
o 3 a 0 1

finally, we obtain the equation involving only 8 to solve for
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po (6" —1)=@O"F— (0" —1)5In(ab*) +5)(0" = (6" —1)In(ab*)). (45)

This equation cannot be explicitly solved for 8* but it can be computed
approximately. Putting « = 0.01, § = 2,6 = 2.5 into (45) gives 8" = 0.73, putting
this value into (44) gives 8 = 0.54, and ultimately the equilibrium exchange rate is
obtained by putting these values in (43) which gives e = 0.81. So, the equilibrium
triple is (é, 0, é*) = (0.81,0.54,0.73). The derivatives of the exchange rate

function with respect to 8" and 6 are

£620* In(ad”) — (06" F + 5)
eg = = —0.49,
0°(00°B + 5)2

_ —6In(ab”)

€g = (99*3—4-6)2 =1.13.

Using (40)-(42), inequalities (1.16), (1.17) take the form

o)
0*(1—0)eg(6*ef? +2B) — 1 +ﬁ(€99 —e) <0,

00" eg- +e)+ (1 —0%)eeg- < 0.

For (é,85,6¢+,0,0") = (0.81,1.13,—0.49, 0.54, 0.73), these inequalities can be

verified.
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Appendix C

In order to ensure that the equilibrium point (é, 0, 9*) = (e(é, ] *), 0,0 *) obtained
by solving the system of equations (1.13), (1.14), (1.15), really gives the maximums

of the gain functions, we proceed by checking the second derivatives

92 (46)

N

]
e * Ny *! *
—91)'(5) — 6*D*' (6 e)J

+

e ! e * y*! *
+ (0—20 (5) —0"D"'(6 e)> a

v
0 e? e
= % [ﬁ 5exp (—5 5)
e e
+ <9—2 dexp (—6 5)
—0*aexp(BO7e)(BO”e

s (53

¥ D) exp (—6%) — %6exp (—6%) — O0*aexp(BO*e)(BO*e + 1)

where e is a shorthand notation for e(8,0%). Here we substituted

e

D (5) ,D’ (g) ,D*'(6%e) from (40). Since (46) involves several similar terms, let us

introduce the following notations for more convenience

f(e,8) =exp (—6%), (47)
g(e) = aexp(BO*e)(BO*e + 1)

then their derivatives with respect to 9 are
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2 f(e6) =y exp(~55) (e — bey), 9

%9(6) = aff eqsexp(f07e)(2 + 0%e)

and the derivative of the exchange rate function (43) with respect to 6 is

de  —6ln (ab")
90 (66*B + 6)%
applying these notations, (46) now becomes
9?2 (49)
392 G(e 0,0%)

=30 93 5f(€ 6)

eZ
ﬁSf(e, 0)
f(e,0) —56f(e,0) — 0°g(e)

+ <%6f(e, 0) + 9*g(e)>

e? 0 2eey03 — 360%e2
——8—f(e 0) + 6f (e, ) —2 h

© 5f(e,0
+<ﬁ f(e! )

2ee

(£e.0) = §57(e.0) ~ 0°9(0)) 676 2 (e.0) + 67 (e, 0) 22

+ 9*9(e)> 2
(g207(c.0) +6°9(0))

g—ime,m( 2 Fe,0) ~ 56f"(e,0) — 5f (e, 0) 20— ¢ e*f—eg(e)>

(&oe0)+0°9()

eZ
gz%/(:%) ° g — 20e
(2]

+f(e,9)——5f(e 9) 99(8) 92 aef(e 9)+5f(€ 9)—

+ 6" ig(e)

Putting the equilibrium values from Appendix A, (é, 0, 9*) = (0.81,0.54,0.73) in
(49) gives
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G"(0.81,0.54,0.73) = —0.24 < 0.

Second derivative of G*(e, 8,60%) is

. . (50)
WG (6,9,9)
=95 g0 0O
1, 1 _ e eD*'(6%e)
_ _D* 9* __DI _
<e @y (9)>f<e,e>—§6f<e,e>—e*g(e>

1 1
=55 [E aexp(f0*e)(fO*e + 1) — Eaexp(ﬁ@ e)(fB*e+1)
( e) eaexp(f0*e)(fOe + 1)

_65 exp (—6%) - %6exp (—6%) — 0*aexp(BO*e)(BO*e + 1

+6
g €xp

Similarly to (46), here we also substituted D (g),D’ (g),D*'(@*e) from (40).

Introduce the functions

f(e,8") = aexp(BO*e)(BO*e + 1), (51)

9(e) = exp (~67)

with their derivatives

% £(e,0%) = aBexp(B0*e) (0" ey + €)(2 + BO"e), (52)
d e e
FYE gle) = —Sgeg*exp (—65).

Derivative of the exchange rate function (43) with respect to 8" is

de 626" In(af*) — 6(66°B + 6)
00" 0*(06*F + §)2

105



Putting these values in (50) yields

92 d |1 1 § ef(e,8")
——G6*(e,0,6") = —|—f(e,0") — | -f(e, 6" +=

3072 (e ) FYE g*f(e ) (ef(e )+9‘g(e)>g(e)—§ag(e)—e*f(e,e*)]
_fe8) f(e8)

- 9+ 0*2

(9(e) — £ 8g(e) — 0" f(e,0)) (e 5ae £ (e,67) + eg-£(e,6%) — ef (e,0") (507 9(€) — & 6 50z 9 e)

(g(e) —%(Yg(e) -0°f (e, 0*)>2

L2 (08) = 2 r(00") + 5L g(e))

1 L6
- (5fEo)+3g(@

ef (6,9*> (
9(0) ~Gog() - 0'f(e,6")

+

from which we obtain
G*"(0.81,0.54,0.73) = —0.02< 0

by putting the equilibrium values.

So we can conclude that since for our example G*"'(0.81,0.54,0.73) < 0 and
G''(0.81,0.54,0.73) < 0,(e(8,8%),8,0") = (0.81,0.54, 0.73) represents the Nash
equilibrium. Imposing these tariffs on imported commodities ensures maximum

gains from trade for both nations.
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Appendix D

Solution to (2.4): The goal is to express h, f, h*, f* in terms of t and ¢t*.

om i s _a—f" (53)
%—a ff=2h=0=>h= >
o . . . a—h"—t* (54)
ﬁ—a—h —-2f -t —0—>f—#,
671' * A*_a_f (55)
Oh*_a_f_Zh =0=>h"= 5
omr i s _a—h-—t (56)
af*—a—h—Zf t=0=>f"= >
wherea > f*,a > h* +t*,a > f,a > h + t. Putting (56) in (53) gives
~ +t
Foatt 67)
3
putting (55) into (54) yields
, a—2t (58)
f_ 3 )
and putting (58) into (55) gives
- a+t”
ettt (59

while putting (57) into (56) gives
., a—2t 60
7 (60)

Solution to (2.6):

g W(t, t*)
ot ’

d[la+t a-2t\° a+t a-—-2t\a+t (61)
ot|2\ 3 3 3 3 3

a+t* a—2tya-—2t" a—2t* a— 2t
+(a— 3 ) —t +t

3 3 3
0 12a—t2_|_(a+t)2
T ot|2 3 3

= 1(2 t)+2( +t)+1 4t—o
~ Tgvd g\ 3473t
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Solving for t gives t = % Similarly

2

a 0 [1ra+t* a-—2t\2 a+t* a-—2t"\a+t*
( )+(a_ 3 3 )

ac W) =55 I 3

3 t 3 +t 3
01 (Za - t*)z 4 (a + t*)z N 1 G Zt*z)z
o |2\ 3 3 3\

=0

a+t a-—2t\a-—2t a—2t a— 2t*
+<a_ 3 3 ) - *

= 1(2 t*)+2( +t*)+a 4
~ g g \“ 3 3¢

Solving for t* gives t* = a/3. Solution to (2.9): Z—Z and Z—Z are the same as (53) and
(54), while h and f correspond to (57) and (58) respectively. Differentiating m*

from (2.7) with respect to h* and f* gives

o ) . a—f (62)
ah*—e(a—Zah f)=0=>h"= >

putting (58) into (62) gives

+t*
ottt (63)

Since (¢, t*, h, f, k", f*) = ZL [(a—h"— F)h* + (@a—h— f)f* —tf*], we have

°f
Z;: - —p’ff [3f2+2(t+h—a)f —(@—h"— Hh] =0, (64)
solving (64) results in
_—t—h+a+(t+h—a)?+3(a—h"—f)h (65)

fr= 3
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Appendix E

Table E1 illustrates a historical data for Vanguard Total Stock Market ETF (VTI)
and iShares 7-10 Year Treasury Bond ETF (EIF) with the daily returns computed.
(Source: www.nasdag.com) Based on which we optimize the portfolio in three

dimensions. Spot prices are given on a daily bases for four months. T = 30.

Date VTI IEF Ry R,
4/18/2019 148.27 105.32 0.001 0.002
4/17/2019 148.05 105.07 -0.004 0.000
4/16/2019 148.60 105.05 0.000 -0.003
4/15/2019 148.56 105.41 -0.001 0.001
4/12/2019 148.68 105.27 0.007 -0.005
4/11/2019 147.69 105.76 0.000 -0.002
4/10/2019 147.70 106.00 0.005 0.002
4/9/2019 147.02 105.75 -0.006 0.002
4/8/2019 147.91 105.56 0.001 -0.002
4/5/2019 147.78 105.73 0.005 0.000
4/4/2019 147.04 105.68 0.002 0.001
4/3/2019 146.73 105.57 0.002 -0.003
4/2/2019 146.38 105.90 0.000 0.002
4/1/2019 146.39 105.72 0.012 -0.009
3/29/2019 144.71 106.67 0.007 -0.002
3/28/2019 143.76 106.84 0.004 0.000
3/27/2019 143.13 106.83 -0.005 0.003
3/26/2019 143.79 106.52 0.008 -0.001
3/25/2019 142.69 106.61 -0.006 0.003
3/22/2019 143.56 106.34 -0.021 0.007
3/21/2019 146.62 105.56 0.012 0.000

Table E1: Historical Data for VTI and EIF, Daily Returns
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Computations of g and o0; for j =12 from (3.8) and (3.9) for various
combinations of weights is illustrated in Table E2. The last columns indicate ¢ from

(3.12) and P(t,,, < T) from (3.17).

q1 q» 01 o) i o P(t,, <T)
0.1 | 09 | 0.0006 | 0.0028 0.0004 0.0028 0.6410
0.2 | 0.8 | 0.0013 | 0.0024 0.0005 0.0028 0.6418
03 | 0.7 | 0.0020 | 0.0021 0.0006 0.0029 0.6397
04 | 0.6 | 0.0026 | 0.0018 0.0007 0.0032 0.6210
05 | 0.5 | 0.0033 | 0.0015 0.0008 0.0036 0.5953
0.6 | 0.4 | 0.0040 | 0.0012 0.0009 0.0041 0.5734
0.7 | 03 | 0.0046 | 0.0009 0.0010 0.0047 0.5579
0.8 | 0.2 | 0.0052 | 0.0006 0.0011 0.0053 0.5478
09 | 0.1 | 0.0059 | 0.0003 0.0012 0.0060 0.5414
1.0 | 0.0 | 0.0066 | -8.9E-06 | 0.0013 0.0066 0.5376

Table E2: Portfolios of Two Assets

The quantities from (3.25) are given in Table E3 below

01 q, m E[R,] E[ty, AT]
0.1 0.9 -0.0038 0.0117 14
0.2 0.8 -0.0031 0.0148 13
0.3 0.7 -0.0030 0.0179 13
0.4 0.6 -0.0033 0.0209 14
0.5 0.5 -0.0040 0.0239 14
0.6 0.4 -0.0049 0.0269 15
0.7 0.3 -0.0060 0.0299 16
0.8 0.2 -0.0071 0.0329 16
0.9 0.1 -0.0083 0.0359 16
1.0 0.0 -0.0095 0.0388 17

Table E3: Three Dimensions for Two Asset Portfolios
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Table E4 illustrates the annual spot prices from 2009 to 2019 (Source:

www.nasdag.com). The annual spot prices of four common stocks are given with

their rates of returns — Travelzoo (TZOO), AXT Inc. (AXTI), Universal Forest

Products (UFPI), Advanced Micro Devices (AMD). The investment horizon is

taken to be 10 years. Unlike the previous example, here we take the annual spot

prices. This example intends to illustrate E[7,, A T| within the investment horizon

[0,T].

Date TZOO | AXTI | UFPI | AMD | R, R, R, R,
16:00 1826 |5.55 |36.65]27.88 | 0.8576 | 0.2759 | 0.4118 | 0.5103
12/31/2018 [ 9.83 | 435 |25.96 | 18.46 | 0.5240 |-0.500 | -0.310 | 0.7957
12/29/2017 | 6.45 |87 |37.62 |10.28 | -0.314 |0.813 |0.1045 | -0.094
12/30/2016 | 9.4 |48 |34.06]11.34 [0.123 [0.9355 | 0.4945 | 2.9512
12/31/2015 | 837 |2.48 |22.79 (287 [-0.337 [-0.114 |0.2852 | 0.0749
12/31/2014 | 12.62 |28 |17.33[2.67 |-0.408 |0.0728 | 0.0203 | -0.310
12/31/2013 | 21.32 |2.61 |17.38|3.87 [0.1227 | -0.071 |0.3707 | 0.6125
12/31/2012 | 1899 |2.81 |12.68 |24 [-0.227 [-0.326 | 0.2323 | -0.556
12/30/2011 | 2458 |4.17 |1029 |54 |-0.406 |-0.601 |-0.206 | -0.340
12/31/2010 | 41.375 | 10.44 | 12.97 | 8.18 |2.367 |2.2123 | 0.0568 | -0.155
12/31/2009 | 12.29 [3.25 |12.27 ] 9.68

Table E4: Historical Data for TZO0, AXTI, UFPI, AMD, annual returns
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Computations of g and g; for j = 1,2,3,4 from (3.8) and (3.9) for various

combinations of weights are shown in E5. The last column contains computations

of & from (3.12).

a1 az as qa 01 02 03 Oy H o

0.0 | 0.0 0.6 0.4 |0.0200 | 0.0905 | 0.0807 | 0.4374 | 0.0296 | 0.4544
0.0 | 0.0 0.8 0.2 |0.0095 | 0.0722 | 0.0717 | 0.2726 | 0.0958 | 0.2911
00 | 0.1 0.6 0.3 |0.0626 | 0.1411 | 0.0753 | 0.3588 | 0.0159 | 0.3978
00 | 0.1 0.7 0.2 |0.0573 | 0.1320 | 0.0708 | 0.2764 | 0.0551 | 0.3195
00 | 0.1 0.8 0.1 |0.0520 | 0.1228 | 0.0663 | 0.1940 | 0.084 | 0.2446
00 | 0.1 0.9 0.0 | 0.0467 | 0.1137 | 0.0618 | 0.1116 | 0.1026 | 0.1771
00 | 02 0.6 0.2 |0.1051 | 0.1918 | 0.0670 | 0.2801 | 0.0021 | 0.3622
00 | 0.2 0.7 0.1 |0.0998 | 0.1826 | 0.0654 | 0.1977 | 0.0422 | 0.2944
00 | 0.2 0.8 0.0 |0.0945 | 0.1735 | 0.0609 | 0.1153 | 0.0720 | 0.2367
0.1 0.0 0.6 0.3 |0.0819 | 0.1236 | 0.0699 | 0.3494 | 0.0201 | 0.3860
0.1 0.0 0.7 0.2 |0.0767 | 0.1145 | 0.0653 | 0.2670 | 0.0580 | 0.3075
0.1 0.0 0.8 0.1 |0.0714 | 0.1053 | 0.0608 | 0.1846 | 0.0860 | 0.2323
0.1 0.1 0.6 0.2 |0.1244 | 0.1743 | 0.0645 | 0.2708 | 0.0064 | 0.3512
0.1 0.1 0.7 0.1 |0.1192 | 0.1651 | 0.0600 | 0.1884 | 0.045 | 0.2838
0.1 0.1 0.8 0.0 |{0.1139 | 0.1560 | 0.0554 | 0.1060 | 0.0738 | 0.2271
0.1 0.2 0.7 0.0 |0.1617 | 0.2160 | 0.0546 | 0.1097 | 0.0324 | 0.2962
02 | 0.0 0.7 0.1 |0.1385 | 0.1476 | 0.0545 | 0.1790 | 0.0481 | 0.2757
02 | 0.0 0.8 0.0 |0.1333 | 0.1385 | 0.0500 | 0.0966 | 0.0753 | 0.2208
03 | 0.0 | 0.06 | 0.1 |0.2057 |0.1899 | 0.0481 | 0.1734 | 0.0011 | 0.3328
03 | 0.0 0.7 0.0 |0.2004 | 0.1807 | 0.0436 | 0.0910 | 0.0382 | 0.2881

Table E5: Portfolios of Multi Assets
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Ultimately the three dimensions are generated in Table E6. This table corresponds

to the efficient surface similar to Figure 3.4. Since there are too many combinations

of weights constructing different portfolios, Table E6 illustrates all combinations

of weights of four assets. Detailed results are provided in the accompanying

spreadsheet.

41 q2 q3 g m E[Rp] E[ty AT]
00 |00 |06 |04 |-0.5503 2.2320 0.2956
00 |00 |08 |02 |-0.3636 0.4641 0.9584
00 |01 |06 |03 |-0.4528 2.3620 0.1585
00 |01 |07 |02 |-0.3662 1.4853 0.5505
00 |01 |08 [0.1 |-0.3002 0.5336 0.8398
00 |01 |09 |00 |[-0.2674 -0.2307 1.0263
00 |02 |06 |02 |-0.3961 2.5076 0.0206
00 |02 |07 |01 |-0.3346 1.7371 0.4218
00 |02 |08 |00 |[-0.3044 0.8344 0.7203
01 |00 |06 |03 |-0.4321 2.2494 0.2011
01 |00 |07 |02 |-0.3426 1.3555 0.5799
01 (00 |08 |01 |-0.2735 0.4101 0.8560
01 |01 |06 |02 |-0.3688 2.3515 0.0643
01 |01 |07 |01 |-0.3043 1.5633 0.4524
01 |01 |08 |00 |[-0.2726 0.6937 0.7377
01 (02 |07 |00 |-0.3345 1.9615 0.3241
02 |00 |06 |02 |-0.3578 2.2738 0.1064
02 |00 |07 |01 |-0.2928 1.4642 0.4813
02 |00 |08 |02 |-0.2617 0.6079 0.7534
03 |00 |06 |01 |-0.3488 2.4285 0.0115
03 |00 |07 |00 |-0.3240 1.8054 0.3824

Table E6: Three Dimensions for Multi Asset Portfolios
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Table E7 shows the monthly spot prices of three common stocks — Apple Inc
(AAPL), JPMorgan Chase Co. (JPM) and Walmart Inc. (WMT) from April the 28®,

2017 to 1= of April, 2019. T = 30 months. (Source www.nasdag.com)

Date AAPL JPM WMT R, R, R3

16:00 203.86 113.46 103.18 0.0732 0.1208 0.0579

3/29/2019 | 189.95 101.23 97.53 0.0970 -0.0300 | -0.015

2/28/2019 | 173.15 104.36 98.99 0.0403 0.0083 0.0330

1/31/2019 | 166.44 103.5 95.83 0.0552 0.0602 0.0288

12/31/2018 | 157.74 97.62 93.15 -0.1167 | -0.1220 | -0.0461

11/30/2018 | 178.58 111.19 97.65 -0.1840 | 0.0199 -0.0262

10/31/2018 | 218.86 109.02 100.28 -0.0304 | -0.0339 | 0.0678

9/28/2018 | 225.74 112.84 93.91 -0.0083 | -0.0152 | -0.0203

8/31/2018 | 227.63 114.58 95.86 0.1962 -0.0032 | 0.0743

7/31/2018 | 190.29 114.95 89.23 0.0280 0.1032 0.0418

6/29/2018 | 185.11 104.2 85.65 -0.0094 | -0.0263 | 0.0377

5/31/2018 | 186.87 107.01 82.54 0.1308 -0.0163 | -0.067

4/30/2018 | 165.26 108.78 88.46 -0.0150 | -0.0108 | -0.0057

3/29/2018 | 167.78 109.97 88.97 -0.0581 -0.0479 | -0.0116

2/28/2018 | 178.12 115.5 90.01 0.06388 | -0.0015 | -0.1556

1/31/2018 | 167.43 115.67 106.6 -0.0106 | 0.0816 0.0795

12/29/2017 | 169.23 106.94 98.75 -0.0153 | 0.0232 0.0156

11/30/2017 | 171.85 104.52 97.23 0.0166 0.0389 0.1136

10/31/2017 | 169.04 100.61 87.31 0.0968 0.0534 0.1174

9/29/2017 | 154.12 95.51 78.14 -0.0602 | 0.0508 0.0009
8/31/2017 | 164 90.89 78.07 0.1027 -0.0100 | -0.0240
7/31/2017 | 148.73 91.8 79.99 0.0327 0.0044 0.0570
6/30/2017 | 144.02 91.4 75.68 -0.0572 | 0.1126 -0.0372
5/31/2017 | 152.76 82.15 78.6 0.0634 -0.0558 | 0.0455

Table E7: Historical Data for AAPL, JPM and WMT, Daily Returns
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Computations of g and g; for j =1,2,3 from (3.8) and (3.9} for various

combinations of weights are shown in Table E8. We also compute & from (3.12)

illustrated in the last column. First three columns denote the weights, columns 4-

6 denote the g; and the last columns denote fand &.

a1 a: as 01 02 03 H o
0.00 0.00 1.00 0.0009 | 0.00010 | 0.0036 |0.0151 |0.0741
0.00 0.10 0.90 0.0008 | 0.0013 |0.0033 |0.0149 |0.0735
0.00 0.20 0.08 0.0008 | 0.0014 |0.0031 |0.0146 |0.0729
0.00 0.30 0.70 0.0007 |0.0017 |0.0028 |0.0144 |0.0722
0.00 0.40 0.60 0.0007 |0.0019 |0.0026 |0.0141 |0.0716
0.00 0.50 0.50 0.0007 |0.0019 |0.0026 |0.0141 |0.0716
0.00 0.60 0.40 0.0006 |0.0023 |0.0020 |0.0137 |0.0704
0.00 0.70 0.30 0.0006 |0.0025 |0.0018 |0.0134 | 0.0697
0.00 0.80 0.20 0.0005 |0.0027 |0.0015 |0.0131 |0.0691
0.00 0.90 0.10 0.0005 |0.0030 |0.0013 |0.0129 | 0.0684
0.00 1.00 0.00 0.0004 |0.0032 |0.0010 |0.0127 | 0.0677
0.10 0.00 0.90 0.0015 | 0.0010 |0.0033 |0.0154 | 0.0757
0.10 0.10 0.80 0.0014 |0.0012 |0.0031 |0.0151 |0.0751
0.10 0.20 0.70 0.0014 |0.0014 |0.0028 |0.0149 | 0.0745
0.10 0.30 0.60 0.0013 |0.0016 |0.0025 |0.0147 |0.0739
0.10 0.40 0.50 0.0013 |0.0018 |0.0023 |0.0144 |0.0732
0.10 0.50 0.40 0.0012 | 0.0020 |0.0020 |0.0142 |0.0726
0.10 0.60 0.30 0.0012 |0.0022 |0.0018 |0.0139 |0.0720
0.10 0.70 0.20 0.0011 |0.0025 |0.0015 |0.0137 |0.00714
0.10 0.80 0.10 0.0011 |0.0027 |0.0013 |0.0135 | 0.0707
0.10 0.90 0.00 0.0010 |0.0029 |0.0010 |0.0132 |0.0701

Table ES8: Portfolios of Three Assets
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Table E9 illustrates the ultimate result of combinations m, E[R], E[t,, AT] from

(3.25)
q1 q2 q3 m E[R,] Elty, AT]
0.00 0.00 1.00 -0.0854 0.4527 14.2704
0.00 0.10 0.90 -0.0789 0.4455 13.5044
0.00 0.20 0.80 -0.0734 0.4383 12.8292
0.00 0.30 0.70 -0.0690 0.4311 12.2883
0.00 0.40 0.60 -0.0661 0.4239 11.9260
0.00 0.50 0.50 -0.0648 0.4167 11.7800
0.00 0.60 0.40 -0.0652 0.4095 11.8718
0.00 0.70 0.30 -0.0672 0.4023 12.2005
0.00 0.80 0.20 -0.0708 0.3951 12.7428
0.00 0.90 0.10 -0.0758 0.3878 13.4597
0.00 1.00 0.00 -0.0819 0.3806 14.3059
0.10 0.00 0.90 -0.0786 0.4613 13.2018
0.10 0.10 0.80 -0.0722 0.4541 12.4184
0.10 0.20 0.70 -0.0670 0.4470 11.7459
0.10 0.30 0.60 -0.0630 0.4398 11.2339
0.10 0.40 0.50 -0.0606 0.4325 10.9307
0.10 0.50 0.40 -0.0600 0.4253 10.8727
0.10 0.60 0.30 -0.0611 0.4181 11.0741
0.10 0.70 0.20 -0.0640 0.4109 11.5217
0.10 0.80 0.10 -0.0684 0.4037 12.1791
0.10 0.90 0.00 -0.0742 0.3965 12.9981

Table E9: Three Dimensions for Three Asset Portfolios
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q1 q2 qs m E[R,] E[t,, AT]
0.20 0.00 0.80 -0.0739 0.4700 12.4007
0.20 0.10 0.70 -0.0678 0.4628 11.6412
0.20 0.20 0.60 -0.0630 0.4556 11.0151
0.20 0.30 0.50 -0.0597 0.4484 10.5739
0.20 0.40 0.40 -0.0580 0.4412 10.3642
0.20 0.50 0.30 -0.0581 0.4340 10.4152
0.20 0.60 0.20 -0.0601 0.4268 10.7289
0.20 0.70 0.10 -0.0638 0.4195 11.2796
0.20 0.80 0.00 -0.0689 0.4123 12.0223
0.30 0.00 0.70 -0.0717 0.4786 11.9286
0.30 0.10 0.60 -0.0662 0.4714 11.2386
0.30 0.20 0.50 -0.0620 0.4642 10.7021
0.30 0.30 0.40 -0.0595 0.4570 10.3672
0.30 0.40 0.30 -0.0586 0.4498 10.2716
0.30 0.50 0.20 -0.0596 0.4426 10.4322
0.30 0.60 0.10 -0.0622 0.4354 10.8389
0.30 0.70 0.00 -0.0665 0.4282 11.4581
0.40 0.00 0.60 -0.0721 0.4872 11.8105
0.40 0.10 0.50 -0.0674 0.4800 11.2274
0.40 0.20 0.40 -0.0641 0.4728 10.8102
0.40 0.30 0.30 -0.0624 0.4656 10.5976
0.40 0.40 0.20 -0.0623 0.4584 10.6146

Table E9: Three Dimensions for Three Asset Portfolios
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q1 q2 qs m E[R,] Elty, AT]
0.40 0.50 0.10 -0.0639 0.4512 10.8655
0.40 0.60 0.00 -0.0672 0.4440 11.3321
0.50 0.00 0.50 -0.0751 0.4958 12.0248
0.50 0.10 0.40 -0.0713 0.4886 11.5678
0.50 0.20 0.30 -0.0689 0.4814 11.2775
0.50 0.30 0.20 -0.0680 0.4742 11.1812
0.50 0.40 0.10 -0.0686 0.4670 11.2914
0.50 0.50 0.00 -0.0708 0.4598 11.6033
0.60 0.00 0.40 -0.0805 0.5044 12,5119
0.60 0.10 0.30 -0.0776 0.4972 12.1798
0.60 0.20 0.20 -0.0759 0.4900 12.0057
0.60 0.30 0.10 -0.0759 0.4828 12.0052
0.60 0.40 0.00 -0.0770 0.4756 12.1823
0.70 0.10 0.20 -0.0857 0.5058 12.9739
0.70 0.20 0.10 -0.0848 0.4986 12.8948
0.70 0.30 0.00 -0.0852 0.4914 12.9658
0.80 0.00 0.20 -0.0967 0.5215 14.0020
0.80 0.10 0.10 -0.0953 0.5143 13.8710
0.80 0.20 0.00 -0.0950 0.5071 13.8643
0.90 0.00 0.10 -0.1068 0.5301 14.8721
0.90 0.10 0.00 -0.1060 0.5229 14.8114
1.00 0.00 0.00 -0.1179 0.5386 15.7629

Table E9: Three Dimensions for Three Asset Portfolios
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As a comparison, Table E10 illustrates the portfolio with the same assets optimized
under the Mean-Variance framework. This table corresponds to the efficient

frontier given in the example.

0 qz qs E[R] o’ o
0.00 0.00 1.00 0.0151 0.0036 0.0598
0.00 0.10 0.90 0.0149 0.0031 0.0558
0.00 0.20 0.80 0.0146 0.0027 0.0524
0.00 0.30 0.70 0.0144 0.0025 0.0496
0.00 0.40 0.60 0.0141 0.0023 0.0478
0.00 0.50 0.50 0.0139 0.0022 0.0468
0.00 0.60 0.40 0.0137 0.0022 0.0469
0.00 0.70 0.30 0.0134 0.0023 0.0480
0.00 0.80 0.20 0.0132 0.0025 0.0500
0.00 0.90 0.10 0.0129 0.0028 0.0528
0.00 1.00 0.00 0.0127 0.0032 0.0563
0.10 0.00 0.90 0.0154 0.0031 0.0559
0.10 0.10 0.80 0.0151 0.0027 0.0520
0.10 0.20 0.70 0.0149 0.0024 0.0487
0.10 0.30 0.60 0.0147 0.0021 0.0462
0.10 0.40 0.50 0.0144 0.0020 0.0447
0.10 0.50 0.40 0.0142 0.0019 0.0441
0.10 0.60 0.30 0.0139 0.0020 0.0447
0.10 0.70 0.20 0.0137 0.0021 0.0462
0.10 0.80 0.10 0.0135 0.0024 0.0487
0.10 0.90 0.00 0.0132 0.0027 0.0520
0.20 0.00 0.80 0.0157 0.0028 0.0533

Table E10: Mean-Variance Pairs
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Table E11 illustrates the daily spot prices from March the 25, 2019 to 23+ of April,
2019 (Source: www.nasdag.com) for three common stocks — YUMA Energy Inc
(YUMA), Immunic Inc. (IMUX), Savara Inc (SVRA) with their rates of returns.

T=30. Unlike the previous example, here we take the daily spot prices.

Date YUMA IMUX SVRA Ry R, R
4/23/2019 0.355 17.35 10.7 0.6136 0.2133 0.1088
4/22/2019 0.22 14.3 9.65 0.2557 | -0.1222 | 0.0354
4/18/2019 | 0.1752 16.29 9.32 -0.1314 | 0.1352 0.0344
4/17/2019 | 0.2017 14.35 9.01 0.3447 | -0.1196 | -0.008
4/16/2019 0.15 16.3 9.08 -0.1892 | -0.3242 | -0.0011
4/15/2019 0.185 24.12 9.09 -0.0537 | -0.2735 | -0.0401
4/12/2019 | 0.1955 33.2 9.47 0.0736 0.0778 | -0.0094
4/11/2019 | 0.1821 30.804 9.56 -0.2251 | 0.3144 0.0063
4/10/2019 0.235 23.436 9.5 0.0000 | -0.1849 | 0.0556
4/9/2019 0.235 28.752 9 0.3824 | -0.0133 | -0.0033
4/8/2019 0.17 29.14 9.03 0.4167 | 0.4173 0.0261
4/5/2019 0.12 20.56 8.8 0.0000 1.4582 | -0.0112
4/4/2019 0.12 8.364 8.9 -0.0400 | 0.0034 0.0023
4/3/2019 0.125 8.336 8.88 0.0000 0.0589 0.0559
4/2/2019 0.125 7.872 8.41 -0.1554 | -0.0386 | 0.0646
4/1/2019 0.148 8.188 7.9 0.2437 0.0386 0.0719
3/29/2019 0.119 7.884 7.37 0.0540 0.0144 -0.016
3/28/2019 | 0.1129 7.772 7.49 0.0000 | -0.0122 | -0.0730
3/27/2019 | 0.1129 7.868 8.08 -0.0053 | -0.0475 | 0.0215
3/26/2019 | 0.1135 8.26 791 -0.0291 | -0.0282 | -0.0247
3/25/2019 | 0.1169 8.5 8.11

Table E11: Historical Data for YUMA, IMUX and SVRA, Daily Returns
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We compute i and d; for j = 1,2,3 from (3.8) and (3.9) for various combinations

of weighs. We also compute & from (3.12). This information is summarized in

Table E12.
a1 az as 01 02 03 [ G
0.40 0.60 0.00 0.0227 | 0.0803 | 0.0013 |0.0727 | 0.0835
0.50 0.00 0.50 0.0256 | 0.0029 |0.0024 |0.0458 | 0.0259
0.50 0.10 0.40 0.0258 |0.0159 |0.0023 |0.0517 | 0.0304
0.50 0.20 0.30 0.0261 |0.0289 |0.0021 |0.0574 | 0.0390
0.50 0.30 0.20 0.0264 | 0.0419 | 0.0019 |0.0629 | 0.0496
0.50 0.40 0.10 0.0266 | 0.0549 | 0.0018 |0.0682 |0.0610
0.50 0.50 0.00 0.0269 |0.0679 |0.0016 |0.0734 | 0.0730
0.60 0.00 0.40 0.0301 | 0.0035 |0.0026 |0.0519 |0.0304
0.60 0.10 0.30 0.0303 | 0.0165 | 0.0024 |0.0577 | 0.0346
0.60 0.20 0.20 0.0306 |0.0295 | 0.0022 |0.0633 | 0.0426
0.60 0.30 0.10 0.0309 |0.0425 | 0.0021 |0.0688 | 0.0525
0.60 0.40 0.00 0.0311 | 0.0555 |0.0019 |0.0741 | 0.0636
0.70 0.00 0.30 0.0346 | 0.0041 |0.0027 |0.0580 | 0.0349
0.70 0.10 0.20 0.0348 | 0.0171 |0.0025 |0.0637 | 0.0389
0.70 0.20 0.10 0.0351 | 0.0301 |0.0024 |0.0693 |0.0463
0.70 0.30 0.00 0.0354 | 0.0430 |0.0022 |0.0747 | 0.0557
0.80 0.00 0.20 0.0390 | 0.0046 | 0.0029 |0.0641 |0.0394
0.80 0.10 0.10 0.0393 | 0.0176 | 0.0027 |0.0697 | 0.0432
0.80 0.20 0.00 0.0396 | 0.0306 |0.0025 |0.0752 |0.0501
0.90 0.00 0.10 0.0435 | 0.0052 |0.0030 |0.0701 | 0.0440
0.90 0.10 0.00 0.0438 | 0.0182 |0.0028 |0.0757 | 0.0475
1.00 0.00 0.00 0.0480 | 0.0058 |0.0031 |0.0761 |0.0485

Table E12: Portfolios of Three Assets, Large FPTs
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Ultimately the three dimensions are generated in Table E13 according to (3.25).

All E[t,, A T] values coincide with T.

YUMA IMUX SVRA m E[R,] | E[tmAT]
0.00 0.00 1.00 -0.0542 0.4438 30
0.00 0.10 0.90 -0.0654 0.6299 30
0.00 0.20 0.80 -0.1043 0.8109 30
0.00 0.30 0.70 -0.1516 0.9868 30
0.00 0.40 0.60 -0.2018 1.1575 30
0.00 0.50 0.50 -0.2532 1.3231 30
0.00 0.60 0.40 -0.3053 1.4835 30
0.00 0.70 0.30 -0.3577 1.6388 30
0.00 0.80 0.20 -0.4104 1.7890 30
0.00 0.90 0.10 -0.4632 1.9340 30
0.00 1.00 0.00 -0.5162 2.0739 30
0.10 0.00 0.90 -0.0610 0.6315 30
0.10 0.10 0.80 -0.0711 0.8156 30
0.10 0.20 0.70 -0.1071 0.9945 30
0.10 0.30 0.60 -0.1526 1.1684 30
0.10 0.40 0.50 -0.2017 1.3370 30
0.10 0.50 0.40 -0.2524 1.5006 30
0.10 0.60 0.30 -0.3040 1.6590 30
0.10 0.70 0.20 -0.3560 1.8122 30
0.10 0.80 0.10 -0.4084 1.9604 30
0.10 0.90 0.00 -0.4610 2.1033 30
0.20 0.00 0.80 -0.0780 0.8184 30

Table E13: Three Dimensions for Three Asset Portfolios, Large FPTs
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YUMA IMUX SVRA m E[R,] | EltmATI
0.20 0.10 0.70 -0.0860 | 1.0004 30
0.20 0.20 0.60 -0.1171 1.1773 30
0.20 0.30 0.50 -0.1591 1.3491 30
0.20 0.40 0.40 -0.2060 | 1.5157 30
0.20 0.50 0.30 -0.2552 1.6772 30
0.20 0.60 0.20 -0.3057 | 1.8336 30
0.20 0.70 0.10 -0.3570 | 1.9848 30
0.20 0.80 0.00 -0.4087 | 2.1309 30
0.30 0.00 0.70 -0.0999 | 1.0044 30
0.30 0.10 0.60 -0.1060 | 1.1844 30
0.30 0.20 0.50 -0.1324 | 1.3593 30
0.30 0.30 0.40 -0.1703 | 1.5290 30
0.30 0.40 0.30 -0.2142 1.6936 30
0.30 0.50 0.20 -0.2614 | 1.8531 30
0.30 0.60 0.10 -0.3103 | 2.0074 30
0.30 0.70 0.00 -0.3605 | 2.1566 30
0.40 0.00 0.60 -0.1243 | 1.1897 30
0.40 0.10 0.50 -0.1289 | 1.3676 30
0.40 0.20 0.40 -0.1512 1.5405 30
0.40 0.30 0.30 -0.1851 1.7082 30
0.40 0.40 0.20 -0.2259 | 1.8707 30

Table E13: Three Dimensions for Three Asset Portfolios, Large FPTs
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YUMA IMUX SVRA m E[R,] | EltmATI
0.40 0.50 0.10 -0.2706 | 2.0281 30
0.40 0.60 0.00 -0.3177 | 2.1804 30
0.50 0.00 0.50 -0.1499 | 1.3741 30
0.50 0.10 0.40 -0.1534 | 1.5500 30
0.50 0.20 0.30 -0.1725 1.7208 30
0.50 0.30 0.20 -0.2028 | 1.8865 30
0.50 0.40 0.10 -0.2402 | 2.0470 30
0.50 0.50 0.00 -0.2824 | 0.2024 30
0.60 0.00 0.40 -0.1762 1.5577 30
0.60 0.10 0.30 -0.1789 | 1.7316 30
0.60 0.20 0.20 -0.1954 | 1.9004 30
0.60 0.30 0.10 -0.2225 | 2.0640 30
0.60 0.40 0.00 -0.2570 | 22225 30
0.70 0.00 0.30 -0.2031 1.7405 30
0.70 0.10 0.20 -0.2051 1.9124 30
0.70 0.20 0.10 -0.2195 | 2.0791 30
0.70 0.30 0.00 -0.2438 | 2.2407 30
0.80 0.00 0.20 -0.2302 1.9226 30
0.80 0.10 0.10 -0.2318 | 2.0924 30
0.80 0.20 0.00 -0.2444 | 2.2570 30
0.90 0.00 0.10 -0.2576 | 2.1037 30
0.90 0.10 0.00 -0.2587 | 22715 30
1.00 0.00 0.00 -0.2851 | 22841 30

Table E13: Three Dimensions for Three Asset Portfolios, Large FPTs

The values of E[t,,, A T] for all weights in Tables E13 are equal to the investment
horizon T. So the expected bounded first passage time component in (3.25) can be
dropped and efficient surface can be replaced by the efficient frontier in two

dimensions.
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